The photosystem Ⅱ (PSII) complex of photosynthetic membranes comprises a number of chlorophyll-binding proteins that are important to the electron flow. Here we report that the chlorophyll b-deficient mutant has decreased the amount of light-harvesting complexes with an increased amount of some core polypeptldes of PSII, including CP43 and CP47. By means of chlorophyll fluorescence and thermolumlnescence, we found that the ratio of Fv/Fm, qP and electron transport rate in the chlorophyll b-deficient mutant was higher compared to the wild type. In the chlorophyll lPdeflclent mutant, the decay of the primary electron acceptor quinones (QA-) reoxidation was decreased, measured by the fluorescence. Furthermore, the thermoluminescence studies in the chlorophyll bdeficient mutant showed that the B band (S2/S3QB-) decreased slightly and shifted up towards higher temperatures. In the presence of dlchlorophenyl-dlmethylurea, which is inhibited in the electron flow to the second electron acceptor quinines (QB) at the PSll acceptor side, the maximum of the Q band (S2QA-) was decreased slightly and shifted down to lower temperatures, compared to the wild type. Thus, the electron flow within PSll of the chlorophyⅡ b-deficient mutant was down-regulated and characterized by faster oxidation of the primary electron acceptor quinine QA-via forward electron flow and slower reduction of the oxidation S states.
In Arabidopsis thaliana, STN7 kinase is required for phosphorylation of LHCII and for state transitions. In this paper, a hydrophilic polypeptide, derived from the amino acid sequence of STN7, was conjugated to a carrier protein, bovine serum albumin (BSA), to obtain the polyclonal antibody. Immunogenicity and specificity of the polyclonal antibody were evaluated by agar gel immunodiffusion (AGID) test and Western blot analysis. The results show that besides the phosphorylation of LHCII proteins, also the expression of STN7 was regulated by temperature conditions. In addition, the change tendency of LHCII proteins phosphorylation was not only coherent with expression of STN7 with respect to increasing temperature, but also closely related to state transitions. These results would provide useful information for studying regulatory mechanism of LHCII proteins phosphorylation and expression of STN7.