The LIQUAC model is often used to predict vapor-liquid equilibria, osmotic coefficients, and mean ion activity coefficients for electrolyte systems. This paper describes a thermodynamic method to analyze solid-liquid equilibrium for electrolytes in mixed solvents solutions using the LIQUAC model. The KCI solubilities in mixed water-ethanol solutions are predicted with the LIQUAC model and its original interaction parameters. This method is also used to obtain new K^+-ethanol interaction parameters in the LIQUAC model from the solubility data. The new interaction parameters accurately predict the vapor-liquid equilibrium data of K^+ salts (including KCI, KBr, and KCOOCH3) in mixed water-ethanol solutions. The results illustrate the flexibility of the LIQUAC model which can predict not only vapor-liquid equilibrium but also solid-liquid equilibrium in mixed solvent systems.