In this paper,a theory on sieve likelihood ratio inference on general parameterspaces(including infinite dimensional)is studied.Under fairly general regularity conditions,the sieve log-likelihood ratio statistic is proved to be asymptotically X^2 distributed,whichcan be viewed as a generalization of the well-known Wilks' theorem.As an example,asemiparametric partial linear model is investigated.
In this paper a family, called the pivotal family, of distributions is considered.A pivotal family is determined by a generalized pivotal model. Analytical results show that a great many parametric families of distributions are pivotal. In a pivotal family of distributions a general method of deriving fiducial distributions of parameters is proposed. In the method a fiducial model plays an important role. A fiducial model is a function of a random variable with a known distribution, called the pivotal random element, when the observation of a statistic is given.The method of this paper includes some other methods of deriving fiducial distributions. Specially the first fiducial distribution given by Fisher can be derived by the method. For the monotone likelihood ratio family of distributions, which is a pivotal family, the fiducial distributions have a frequentist property in the Neyman-Pearson view. Fiducial distributions of regular parametric functions also have the above frequentist property. Some advantages of the fiducial inference are exhibited in four applications of the fiducial distribution. Many examples are given, in which the fiducial distributions cannot be derived by the existing methods.
XU Xingzhong & LI Guoying Department of Mathematics, Beijing Institute of Technology, Beijing 100081, China
This article proposes a statistical method for working out reliability sampling plans under Type I censored sample for items whose failure times have either normal or lognormal distributions. The quality statistic is a method of moments estimator of a monotonous function of the unreliability. An approach of choosing a truncation time is recommended. The sample size and acceptability constant are approximately determined by using the Cornish-Fisher expansion for quantiles of distribution. Simulation results show that the method given in this article is feasible.