The generalized Riemann problem for gas dynamic combustion in a neighborhood of the origin t 0 in the (x, t) plane is considered. Under the modified entropy conditions, the unique solutions are constructed, which are the limits of the selfsimilar Zeldovich-von Neumann-Dring (ZND) combustion model. The results show that, for some cases, there are intrinsical differences between the structures of the perturbed Riemann solutions and the corresponding Riemann solutions. Especially, a strong detonation in the corresponding Riemann solution may be transformed into a weak deflagration coalescing with the pre-compression shock wave after perturbation. Moreover, in some cases, although no combustion wave exists in the corresponding Riemann solution, the combustion wave may occur after perturbation, which shows the instability of the unburnt gases.
In this paper,the Riemann problem of a Chapman-Jouguet combustion model for the pressure-gradient equations is considered.By analyzing in phase space,existence and uniqueness of the solution to the Riemann problem are obtained constructively under the global entropy conditions.
This paper studies the Riemann problem for a system of nonlinear degenerate wave equations in elasticity. Since the stress function is neither convex nor concave, the shock condition is degenerate. By introducing a degenerate shock under the generalized shock condition, the global solutions are constructively obtained case by case.