Periodicity is one of the most common phenomena in the physical world. The problem of periodicity analysis (or period detection) is a research topic in several areas, such as signal processing and data mining. However, period detection is a very challenging problem, due to the sparsity and noisiness of observational datasets of periodic events. This paper focuses on the problem of period detection from sparse and noisy observational datasets. To solve the problem, a novel method based on the approximate greatest common divisor (AGCD) is proposed. The proposed method is robust to sparseness and noise, and is efficient. Moreover, unlike most existing methods, it does not need prior knowledge of the rough range of the period. To evaluate the accuracy and efficiency of the proposed method, comprehensive experiments on synthetic data are conducted. Experimental results show that our method can yield highly accurate results with small datasets, is more robust to sparseness and noise, and is less sensitive to the magnitude of period than compared methods.
This paper provides a fast algorithm for Grobnerbases of homogenous ideals of F[x, y] over a finite field F. We show that only the 8-polynomials of neighbor pairs of a strictly ordered finite homogenours generating set are needed in the computing of a Grobner base of the homogenous ideal. It reduces dramatically the number of unnecessary 5-polynomials that are processed. We also show that the computational complexity of our new algorithm is O(N^2), where N is the maximum degree of the input generating polynomials. The new algorithm can be used to solve a problem of blind recognition of convolutional codes. This problem is a new generalization of the important problem of synthesis of a linear recurring sequence.