This paper introduces the concept of BC sequences and investigates some conditions which imply the strong law of large numbers for these sequences. The authors also study the strong law of large numbers for general random variable sequences. As applications of the result the authors characterize p-smoothableness of Banach space. Some generalizations of Petrov theorem, the Marcinkiewicz-Zygmund theorem and Hoffmann-J(?)rgensen and Pisier theorem are obtained.
Let{Xn^-,n^-∈N^d}be a field of Banach space valued random variables, 0 〈r〈p≤2 and{an^-,k^-, (n^-,k^-) ∈ N^d × N^d ,k^-≤n^-} a triangular array of real numhers, where N^d is the d-dimensional lattice (d≥1 ). Under the minimal condition that {||Xn^-|| r,n^- ∈N^d} is {|an^-,k^-|^r,(n^-,k^-)} ∈ N^d ×N^d,k^-≤n^-}-uniformly integrable, we show that ∑(k^-≤n^-)an^-,k^-,Xk^-^(L^r(or a,s,)→0 as |n^-|→∞ In the above, if 0〈r〈1, the random variables are not needed to be independent. If 1≤r〈p≤2, and Banach space valued random variables are independent with mean zero we assume the Banaeh space is of type p. If 1≤r≤p≤2 and Banach space valued random variables are not independent we assume the Banach space is p-smoothable.
This article considers a risk model as in Yuen et al. (2002). Under this model the two claim number processes are correlated. Claim occurrence of both classes relate to Poisson and Erlang processes. The formulae is derived for the distribution of the surplus immediately before ruin, for the distribution of the surplus immediately after ruin and the joint distribution of the surplus immediately before and after ruin. The asymptotic property of these ruin functions is also investigated.