Linear multistep methods and one-leg methods are applied to a class of index-2 nonlinear differential-algebraic equations with a variable delay.The corresponding convergence results are obtained and successfully confirmed by some numerical examples.The results obtained in this work extend the corresponding ones in literature.
In this paper,a new numerical algorithm for solving the time fractional Fokker-Planck equation is proposed.The analysis of local truncation error and the stability of this method are investigated.Theoretical analysis and numerical experiments show that the proposed method has higher order of accuracy for solving the time fractional Fokker-Planck equation.
In this paper,we investigate the dependence of the solutions on the parameters(order,initial function,right-hand function)of fractional delay differential equations(FDDEs)with the Caputo fractional derivative.Some results including an estimate of the solutions of FDDEs are given respectively.Theoretical results are verified by some numerical examples.
The high-order implicit finite difference schemes for solving the fractional- order Stokes' first problem for a heated generalized second grade fluid with the Dirichlet boundary condition and the initial condition are given. The stability, solvability, and convergence of the numerical scheme are discussed via the Fourier analysis and the matrix analysis methods. An improved implicit scheme is also obtained. Finally, two numerical examples are given to demonstrate the effectiveness of the mentioned schemes