This paper presents a passive EPC Gen-2 UHF RFID tag chip with a dual-resolution temperature sensor. The chip tag integrates a temperature sensor, an RF/analog front-end circuit, an NVM memory and a digital base- band in a standard CMOS process. The sensor with a low power sigma-delta (NA) ADC is designed to operate in low and high resolution modes. It can not only achieve the target accuracy but also reduce the power consumption and the sensing time. A CMOS-only RF rectifier and a single-poly non-volatile memory (NVM) are designed to realize a low cost tag chip. The 192-bit-NVM tag chip with an area of 1 mm2 is implemented in a 0.18-#m standard CMOS process. The sensitivity of the tag is -10.7 dBm/-8.4 dBm when the sensor is disabled/enabled. It achieves a maximum reading/sensing distance of 4 m/3.1 m at 2 W EIRR The inaccuracy of the sensor is -0.6 ℃/0.5 ℃ (-1.0 ℃/1.2 ℃) in the operating range from 5 to 15 ℃ in high resolution mode (-30 to 50 ℃ in low resolution mode). The resolution of the sensor achieves 0.02 ℃ (0.18 ℃) in high (low) resolution mode.
This paper proposes a new low power structure to improve the trade-off between the bandwidth and the power consumption of a programmable gain amplifier(PGA).The PGA consists of three-stage amplifiers, which includes a variable gain amplifier and DC offset cancellation circuits.The cutoff frequency of the DC offset cancellation circuits can be changed from 4 to 80 kHz.The chip was fabricated in 0.13μm CMOS technology. Measurement results showed that the gain of the PGA can be programmed from -5 to 60 dB.At the gain setting of 60 dB,the bandwidth can be tuned from 1 to 10 MHz,while the power consumption can be programmed from 850μA to 3.2 mA at a supply voltage of 1.2 V.Its in-band OIP3 result is at 14 dBm.
A low power fast settling multi-standard CMOS fractional-N frequency synthesizer is proposed. The current reusing and frequency presetting techniques are adopted to realize the low power fast settling multi-standard fractional-N frequency synthesizer. An auxiliary non-volatile memory (NVM) is embedded to avoid the repetitive calibration process and to save power in practical application. This PLL is implemented in a 0.18 #m technology. The frequency range is 0.3 to 2.54 GHz and the settling time is less than 5 #s over the entire frequency range. The LC-VCO with the stacked divide-by-2 has a good figure of merit of-193.5 dBc/Hz. The measured phase noise of frequency synthesizer is about -115 dBc/Hz at 1 MHz offset when the carrier frequency is 2.4 GHz and the reference spurs are less than -52 dBc. The whole frequency synthesizer consumes only 4.35 mA @ 1.8 V.
This paper proposes a new structure to lower the power consumption of a variable gain amplifier(VGA) and keep the linearity of the VGA unchanged.The structure is used in a high rate amplitude-shift keying(ASK) based IF-stage.It includes an automatic gain control(AGC) loop and ASK demodulator.The AGC mainly consists of sixstage VGAs.The IF-stage is realized in 0.18μm CMOS technology.The measurement results show that the power consumption of the whole system is very low.The system consumes 730μA while operating at 1.8 V.The minimum ASK signal the system could detect is 0.7 mV(peak to peak amplitude).
This paper presents a low power 2.4 GHz transceiver for ZigBee applications.This transceiver adopts low power system architecture with a low-IF receiver and a direct-conversion transmitter.The receiver consists of a new low noise amplifier(LNA) with a noise cancellation function,a new inverter-based variable gain complex filter (VGCF) for image rejection,a passive quadrature mixer,and a decibel linear programmable gain amplifier(PGA). The transmitter adopts a quadrature mixer and a class-B mode variable gain power amplifier(PA) to reduce power consumption.This transceiver is implemented in 0.18μm CMOS technology.The receiver achieves—95 dBm of sensitivity,28 dBc of image rejection,and -8 dBm of third-order input intercept point(IIP3).The transmitter can deliver a maximum of+3 dBm output power with PA efficiency of 30%.The whole chip area is less than 4.32 mm^2. It only consumes 12.63 mW in receiving mode and 14.22 mW in transmitting mode,respectively.
This paper proposes a sigma-delta fractional-N frequency synthesizer-based multi-standard I/Q carrier generation system.With reasonable frequency planning,the system can be used in multi-standard wireless communication applications(GSM,WCDMA,GPRS,TD-SCDMA,WLAN(802.11a/b/g)).The implementation is achieved by a 0.13μm RF CMOS process.The measured results demonstrate that three quadrature VCOs(QVCO) continuously cover the frequency from 3.1 to 6.1 GHz(65.2%),and through the successive divide-by-2 prescalers to achieve the frequency from 0.75 to 6.1 GHz continuously.The chip was fully integrated with the exception of an off-chip filter.The entire chip area is only 3.78 mm^2,and the system consumes a 21.7 mA@1.2 V supply without output buffers.The lock-in time of the PLL frequency synthesizer is less than 4μs over the entire frequency range with a direct frequency presetting technique and the auxiliary non-volatile memory(NVM)can store the digital configuration signal of the system,including presetting signals to avoid the calibration process case by case.
A 2.4 GHz ultra-low-power RF transceiver with a 900 MHz auxiliary wake-up link for wireless body area networks(WBANs)in medical applications is presented.The RF transceiver with an asymmetric architecture is proposed to achieve high energy efficiency according to the asymmetric communication in WBANs.The transceiver consists of a main receiver(RX)with an ultra-low-power free-running ring oscillator and a high speed main transmitter(TX)with fast lock-in PLL.A passive wake-up receiver(WuRx)for wake-up function with a high power conversion efficiency(PCE)CMOS rectifier is designed to offer the sensor node the capability of work-on-demand with zero standby power.The chip is implemented in a 0.18μm CMOS process.Its core area is 1.6 mm^2. The main RX achieves a sensitivity of-55 dBm at a 100 kbps OOK data rate while consuming just 210μA current from the 1 V power supply.The main TX achieves +3 dBm output power with a 4 Mbps/500 kbps/200 kbps data rate for OOK/4 FSK/2 FSK modulation and dissipates 3.25 mA/6.5 mA/6.5 mA current from a 1.8 V power supply. The minimum detectable RF input energy for the wake-up RX is-15 dBm and the PCE is more than 25%.