A coupled system of singularly perturbed convection-diffusion equations is considered. The leading term of each equation is multiplied by a small positive parameter, but these parameters may have different magnitudes. The solutions to the system have boundary layers that overlap and interact. The structure of these layers is analyzed, and this leads to the construction of a piecewise-uniform mesh that is a variant of the usual Shishkin mesh. On this mesh an upwind difference scheme is proved to be almost first- order accurate, uniformly in both small parameters. We present the results of numerical experiments to confirm our theoretical results.
The notion of finite-type open set condition is defined to calculate the Hausdorff dimensions of the sections of some self-similar sets, such as the dimension of intersection of the Koch curve and the line x=α with α∈ Q.
In this paper, it is proved that any self-affine set satisfying the strong separation condition is uniformly porous. The author constructs a self-affine set which is not porous, although the open set condition holds. Besides, the author also gives a C^1 iterated function system such that its invariant set is not porous.