Scanning electron microscopy and X-ray energy dispersive spectrum analysis show that the clusters of intermetallic AlFeSi particle are distributed on or near the aluminum foil stock surfaces heterogeneously. 3D finite element modeling shows that these clusters of hard particles induce the fracture of the nano-scale lubricant oil film at first and further lead to severe deformation in the nearby aluminum foil substrate along the rolling direction. Consequently, the optical property in this region differs from that in the surroundings, resulting in surface defects.
A novel diffusion couple method was used to investigate the interface diffusion of arsenic into a Nb-Ti microalloyed low carbon steel and its effects on phase transformation at the interface. It is discovered that the content of arsenic has great effect on grain growth and phase transformation at high temperature. When the arsenic content is no more than lwt%, there is no obvious grain growth and no obvious ferrite transitional region formed at the diffusion interface. However, when the arsenic content is no less than 5wt%, the grain grows very rapidly. In addition, the arsenic-enriched ferrite transitional layer forms at the diffusion interface in the hot-rolling process, which results from a slower diffusion rate of arsenic atoms than that of carbon in ferrite.