In order to study the potential associated with high precision CCD astrometry of irregular satel- lites, we have acquired experimental observations of Himalia, the sixth and irregular satellite of Jupiter. A total of 185 CCD observations were obtained by using the 2.4m and 1 m telescopes administered by Yunnan Observatories over ten nights. Preliminary analysis of the observations were made, including geo- metric distortion, atmospheric refraction, and also the phase effect. All positions of Himalia are measured relative to the reference stars from the catalog UCAC4 in each CCD field of view. The theoretical positions of Himalia were retrieved from the Institute de M6chanique C61este et de Calcul des t^ph6m6rides, while the positions of Jupiter were obtained based on the planetary ephemeris INPOP13c. The results show that the means of observed minus computed (O - C) residuals are -0.004" and -0.002" in right ascension and declination, respectively. The standard deviations of (O - C) residuals are estimated to be about 0.04" in each direction.
We observed the open clusters NGC 1664 (43 exposures) and M35 (42 ex- posures) by the Yunnan Faint Object Spectrograph and Camera in the 2.4 m telescope at Yunnan Astronomical Observatory on 2011 January 3, and processed them by a method recently proposed by us. The result shows that there is a geometric distortion effect in the field of view and the maximum distortion is - 0.25 (i.e. 1 pixel). After correcting the geometric distortion, the precision of stellar positional measurement is significantly improved. The best precision in each direction is 6 mas for well-exposed stars.
The 80 cm azimuthal telescope has newly been mounted at Yaoan Station,Purple Mountain Observatory since2018.The astrometric performance of the telescope is tested in the following three aspects.(a)The geometric distortion of its CCD attached.It is stable in both a single epoch and multi epochs.Eight distortion solutions are derived over about one year.The maximum values range from 0.75 to 0.79 pixel and the median values range from 0.14 to 0.16 pixel.(b)The limit magnitude of stars.About 20.5 mag(Gaia-G)stars can be detected with Johnson-V filter exposured in 300 s.The astrometric error of about 20.5 mag stars is estimated at O".14 using the fitted sigmoidal function.(c)The astrometric accuracy and the precision of stacked fast-moving faint object.24 stacked frames of the potentially hazardous asteroid(99942)Apophis were derived on 2021 April 14 and 15(fainter than18 mag)based on the ephemeris shifts.During data reduction,the newest Gaia EDR3 Catalog and Jet Propulsion Laboratory Horizons ephemeris are referenced as theoretical positions of stars and Apophis,respectively.Our results show that the mean(O-C)s(observed minus computed)of Apophis are-O".018 and O".020 in R.A.and decl.,and the dispersions are estimated at O".094 and O".085,respectively,which show the consistency of the stacked results by Astrometrica.