The effects of annealing process on the electrical conductivity and mechanical properties of Cu-Te alloys were studied via AG-10TA electronic universal machine, SB2230 digital electric bridge, SEM and EDS. The results show that recrystallization and precipitation occur simultaneously during the annealing process of Cu-Te alloys. Tellurium precipitates as Cu2Te second phase. The grain size increases with the increasing of annealing temperature and time. The electrical conductivity increases monotonously. The tensile strength of Cu-Te alloy is higher than that of pure copper.
The effects of annealing temperatre on the electrical conducitivity and mechanical property of Cu-Te alloys were studied via an AG-10TA electronic universal machine, an SB2230 digital electric bridge, SEM, EDS and XPS. The results show the electrical conductivity increases while the tensile strength fluctuates when the annealing temperature becomes higher because the recrystallization occurs during the annealing process, leading to the density of dislocation decreasing, grain size growing up, but the second phase precipitating sufficiently and simultaneously.