为了探索建立基于数字图像处理技术的柑桔果实品质非损伤探测技术,采用多光谱照相机MS3100获取不同成熟度椪柑果实样品的数码图像R,G,B通道颜色信息,结合实验室果实可溶性固形物含量(SSC,Solublesolids content)化学分析值,进行了椪柑果实SSC与颜色信息相关性分析和检测模型研究。结果表明,椪柑果实图像的5个颜色参数R,G-R,B-R,G/R和(G-R)/(G+R)与果实SSC值之间具有较好的相关性,校正模型相关系数均在0.83以上;模型验证结果表明,B-R值与果实SSC值所建立的模型预测效果最佳,决定系数为R2=0.651,是椪柑果实SSC检测的最佳图像颜色参数,一元二次方程SSC=-0.0001(B-R)2-0.0219(B-R)+9.601为其最优检测模型;神经网络模型可以容纳更多的相关波段参与柑桔SSC含量的估算,实测值与预测值的相关系数高于其他模型,而均方根误差(RMSE,Root mean square error)低于其他模型,表明利用计算机图像技术进行柑桔果实SSC的检测是可行的。
【目的】探索建立基于近红外光谱技术的土壤微量元素监测技术。【方法】采集三峡库区(重庆)主要加工甜橙基地果园背景土壤样品168个,随机选取100个作为建模样本,其余为检验样本;测定所有样本的近红外反射光谱和土壤Fe、Mn、Zn全含量;运用最佳光谱预处理方法和偏最小二乘法(partial least square method,PLS)及内部交叉验证方法建立校正模型,并进行模型精度检验。【结果】变量标准化(standard normal variables,SNV)为土壤Fe、Mn、Zn含量近红外光谱预测的最佳光谱预处理方法;运用SNV光谱预处理和偏最小二乘法(PLS)及内部交叉验证法建立的土壤Fe、Mn、Zn含量校正模型,95%置信区间内的预测精度分别为92.65%、95.59%和95.59%。【结论】利用近红外反射光谱技术进行土壤Fe、Mn、Zn含量检测可行且精度较高。