In the fiber optical synthetic aperture (FOSA) system, the diffraction of the Gaussian beam limited by the aperture in exit pupil plane of fiber collimator is studied theoretically, and the axial and transverse irradiance distributions are obtained. The point spread function (PSF) and modulation transfer function (MTF) of the truncated Gaussian beam array are computed numerically with different truncation factors. The results show that the diffraction of the truncated Gaussian beam array agrees with the uniform-beam Rayleigh diffraction when the truncation factor is less than 0.5, but little power is transmitted. The PSF and MTF are degraded, but more power can be contained when the truncation factor is larger. The selection of the truncation factor is a trade-off between the loss of transmission and the qualities of PSF and MTF in practical application.
根据光学综合孔径成像系统的成像质量与点扩散函数和光学传递函数的关系,以G o lay-3阵列结构为例,从空间域和频率域对光学综合孔径成像技术进行理论仿真和实验研究。在空间域从理论上分析光学综合孔径成像系统的点扩散函数,对复杂目标的成像通过目标函数与点扩散函数的卷积求得,点扩散函数决定了成像质量。通过数值仿真和模拟实验取得了点扩散函数强度分布图,两者分布规律一致证明理论分析正确。在频率域研究光学综合孔径调制传递函数,理论仿真和实验取得的调制传递函数表明,空间域和频率域内光学综合孔径成像技术的理论分析与实验结果具有较好的一致性。
An improved scheme for passive synthetic aperture imaging is proposed. With this new technique,the radiation signal from field of view (FOV) is received and its frequency is down-converted to intermediate frequency (IF). The IF signals are modulated to light-wave by electro-optical phase modulators and transmitted in fiber. At the end of the fiber,a downscaled fiber array is formed according to the receiver array. The image of FOV is obtained with the fiber array. The principles of passive synthetic aperture photonic imaging technique are analyzed deeply and its properties are compared with traditional imaging method of synthetic aperture. By simulation,the spread function of spot source and the image signal-noise-ratio are investigated using the new imaging approach with FOV radiation from different incidence angles. The introduced scheme can reconstruct the target image and perfect the present synthetic aperture imaging systems.