Deformation behaviors of bicrystalline and nano-polycrystalline structures of various tilt angles and inclination angles in two dimensions are investigated in detail using a two-mode phase field crystal model.The interaction between grain boundary(GB)and dislocation is also examined in bicrystals and nano-polycrystals that both contain asymmetric and symmetric tilt GBs,with energy analysis being carried out to analyze these processes.During deformation simulations,we assume the volume of each simulation cell at every time step is coincident with that of the initial state just before deformation.Our simulation results show that the behaviors of symmetric and asymmetric GBs in bicrystals and nano-polycrystals differ from each other depending on tilt angle and inclination angle.A new dislocation emission mechanism of interest is observed in bicrystals which contain low angle symmetric tilt GBs.Low angle GB has a higher mobility relative to high angle GB in both bicrystalline and nano-polycrystalline structures,as does asymmetric GB to symmetric GB.The generation,motion,pileup and annihilation of dislocations,grain rotation and grain coalescence are observed,which is consistent with the simulation results obtained by molecular dynamics.These simulation results can provide strong guidelines for experimentation.
LONG JianZHANG ShuaiZHAO YuLongLONG QingHuaYANG TaoCHEN Zheng
Based on the microscopic phase-field model, the correlation between site occupation evolution of alloying elements in Ni3V-DO22 phase and growth of Ni3Al-L12 phase was studied during the phase transformation of Ni75Al4.2V20.8. The results demonstrate that the growth of L12 phase can be divided into two stages: at the early stage, the composition of alloying elements in DO22 phase almost remains unchanged; at the late stage, the compositions of Ni and Al decrease while V increases in DO22 phase. Part of alloying elements for L12 phase growth are supplied from the site occupation evolution of alloying elements on three kinds of sublattices in DO22 phase. Ni is mainly supplied from V sublattice, and part of Al is supplied from NiⅠ and V sites at the centre of DO22 phase. The excessive V from the decreasing DO22 phase migrates into the centre of DO22 phase and mainly occupies V and NiII sites. It is the site occupation evolution of antisite atoms and ternary additions in DO22 phase that controls the growth rate of L12 phase at the late stage.
The ferroelectric domain formation(FDF) and polarization switching(FDPS) subjected to an external electric field are simulated using the phase-field(PF) method,and the FDPS mechanism under different external electric fields is discussed.The results show that the FDF is a process of nucleation and growth in ferroelectric without applying any external stress.Four kinds of parallelogram shaped ferroelectric domains are formed at the steady state,in which the 180° anti-phase domains regularly align along the 45° direction and the 90° anti-phase domains regularly distribute like a stepladder.Steady electric fields can rotate domain polarization by 90° and 180°,and force the orientation-favorite domains and the average polarization to grow into larger ones.The greater the steady electric field,the larger the average polarization at the steady state.In ferroelectrics subject to an alternating electric field,domain polarization switches to cause a hysteresis loop and an associated butterfly loop with the alternating electric field.The coercive field and remnant field are enhanced with the increase of the electric field frequency or strength,or with the decrease of temperature.
We modify the anisotropic phase-field crystal model (APFC), and present a semi-implicit spectral method to numerically solve the dynamic equation of the APFC model. The process results in the acceleration of computations by orders of magnitude relative to the conventional explicit finite-difference scheme, thereby, allowing us to work on a large system and for a long time. The faceting transitions introduced by the increasing anisotropy in crystal growth are then discussed. In particular, we investigate the morphological evolution in heteroepitaxial growth of our model. A new formation mechanism of misfit dislocations caused by vacancy trapping is found. The regular array of misfit dislocations produces a small-angle grain boundary under the right conditions, and it could significantly change the growth orientation of epitaxial layers.
The phase-field crystal(PFC) model is employed to study the shape transition of strained islands in heteroepitaxy on vicinal substrates.The influences of both substrate vicinal angles β and the lattice mismatch ξ are discussed.The increase of substrate vicinal angles is found to be capable of significantly changing the surface nanostructures of epitaxial films.The surface morphology of films undergoes a series of transitions that include Stranski-Krastonov(SK) islands,the couple growth of islands and the step flow as well as the formation of step bunching.In addition,the larger ξ indicates an increased strained island density after coarsening,and results in the incoherent growth of strained islands with the creation of misfit dislocations.Coarsening,coalescence and faceting of strained islands are also observed.Some facets in the shape transition of strained islands are found to be stable and can be determined by β and crystal symmetry of the film.