A study on petrography and mineral chemistry of granitic gneiss from the Yinggeli-sayi area in the Altun Mountains of the northwestern China demonstrates that the granitic gneiss experienced a complicated multi-stage metamorphism. The peak-stage mineral assemblage is garnet+perthite(before exsolution)+titanite(before exsolution)+kyanite+zoisite +quartz/ coesite clinopyroxene with minor apatite and rutile. The exsolution of rod-like plagioclase +amphibole is contained within the core part of coarse-grained titanite, and the Si value per unit formula of the titanite is estimated to be 1.032—1.047, which implies that the titanite contains Si with six-fold coordination and the precursor titanite is hence of supersilicic titanite and suggests that the CaSi2O5 component in the titanite is 3.1%—4.7%. The P-T condition of peak metamorphism is estimated to be 3.7—4.3GPa at 1000. High-Al titanite inclusions are also found in the garnet. All of these suggest that the granitic gneiss underwent UHP metamorphism. The granitic gneiss has SiO2 content (> 70%), Al2O3 (12.58%—14.08%), high K2O content (>5%) with Na2O/K2O ratio of 0.4—0.6, LREE-enriched patterns with (La/Yb)N ratio of 4.3—9.1 and large negative Eu anomaly (d Eu = 0.06—0.59), which indicate that the protolith of the granitic gneiss is the product of anatexis of the middle or upper crustal rock. The UHP granitic gneiss, together with the inter-beds of UHP metamorphic garnet lherzolite and garnet-bearing intermediate-basic gneiss in the outcrops, suggests that they all might undergo continental deep subduction, which will have im-portant bearing for further discussion of the dynamic mechanism of the formation and exhuma-tion of the rocks in this region.
LIU Liang, SUN Yong, LUO Jinhai, WANG Yan, CHEN Danling & ZHANG Anda The Key Laboratory of Continental Dynamics, Ministry of Education,Department of Geology, Northwest University, Xi抋n 710069, China
The exsolution of clinopyroxene and rutile in coarse-grain garnet is found in the gneissic K-feldspar(-bearing) garnet clinopyroxenite from Yinggelisayi in the Altyn Tagh, NW China. The maximum content of the exsolved clinopyroxene in the garnet is up to >5% by volume. The reconstructed precursor garnet (Grt1) before exsolution has a maximum Si content of 3.061 per formula uint, being of supersilicic or majoritic garnet. The peak-stage metamorphic pressure of >7 GPa is estimated using the geobarometer for volume percentage of exsolved pyroxene in garnet and the Si-(Al+Cr) geobarometer for majoritic garnet, and the temperature of about 1000℃ using the ternary alkali-feldspar geothermometer and the experimental data of ilmen- ite-magnetite solid solution. The protoliths of the rocks are intra-plate basic and intermediate ig- neous rocks, of which the geochemical features indicate that they are probably the products of the evolution of basic magma deriving from the continental lithosphere mantle. The rocks are in outcrops associated with ultrahigh pressure garnet-bearing lherzolite and ultrahigh pressure garnet granitoid gneiss. All of these data suggest that the ultrahigh pressure metamorphic rocks in the Altyn Tagh are the products of deep-subduction of the continental crust, and such deep- subduction probably reaches to >200 km in depth. This may provide new evidence for further discussion of the dynamic mechanism of the formation and evolvement of the Altyn Tagh and the other collision orogenic belts in western China.
LIU Liang1,3, CHEN Danling1, ZHANG Anda1, SUN Yong1, WANG Yan1, YANG Jiaxi1,2 & LUO Jinhai1 1. Key Laboratory of Continental Dynamics of the Ministry of Education of China, Northwest University, Xi’an 710069, China