The sub-vertical meso-and micro-structures and fabrics developed in coesite-bearing foliated eclogites in the Taohang (桃行) area, southeastern Shandong (山东), China. The diagnostic structures and fabrics, including penetrative foliation or mylonitic foliation containing mineral and stretching lineations, as well as sheath-like folds, appear to be the development of anastomosing UHP eciogite-facies shear belt arrays hosting massive eelogites. Textural relationships and mineral assem-blages indicate that the deformation of foliated eclogites developed closely after the formation of the massive eclogite, prior to the development of the granulite/amphibolite-facies symplectites and coronas, occurring over a very wide pressure range of (31-8)×10^2 MPa. It presents the structural records of the tectonometamorphic processes as being responsible for the earliest stages of exhumation of the UHP metamorphic rocks. Extensive regional field observations show that the meso-and micro-structures and fabrics recognized in the foliated eclogites at Taohang are remarkably similar or consistent in the whole Dabie (大别)-Sulu (苏鲁) UHP metamorphic belt. This article, thus, supports the idea that the earliest stages of exhumation of the UHP metamorphic rocks, from mantle depths to the Moho or the mantle-crust boundary layering, may be attributed mainly to a sub-vertical extrusion and ductile flow along the subduction channel, belonging to a syn-collision exhumation at about 235 to 220 Ma.
Different scales of structural data reveal a complex deformation history of ultrahigh- pressure (UHP) rocks exposed in the Weihai-Rongcbeng area, NE Sulu (northern Jiangsu-eastern Shandong), eastern China. Excluding pre-UHP deformations, at least five major sequential deformational stages (D1-Ds) are recognized. The first deformation (DO produced a weak foliation and lineation in massive eclogites. The foliated eclogite with a dominant foliation containing a stretching and mineral lineation was developed during the I)2 deformation. Both the D1 and D2 deformations occurred under UHP metamorphic conditions, and are well preserved in the eclogite bodies. D3 structures which developed shortly after the formation of granulite/amphibolite facies symplectites are characterized by imbricated associations marked by a regional, steeply dipping foliation, compositional layering, eclogite boudinage, isoclinal folds and reverse ductile shear zones. The D3 deformation was accompanied by decompressional partial melting. A regional, gently dipping amphibolite facies foliation and stretching lineation, low-angle detachments, and dome- and arc-shaped structures formed during the D4 deformation stage dominate to some degree the map pattern of the Weihai-Rongcbeng UHP domain. The last stage of deformation (Ds) gave rise to the final exhumation of the UHP rocks. Ds is characterized by development of brittle-dominated high-angle faulting associated with emplacement of large volmnes of undeformed granite plutons and dykes dated at 134-100 Ma. The deformational and metamorphic sequence followed by the UHP rocks in the Weihai-Rongcheng area is similar to that studied in the entire Dabie-Sulu UHP and HP metamorphic belts from microscopic to mapping scale. Based on structural data, combined with available petrographic, metamorphic and geochronological data, a speculative tectonic evolutionary model for the Dabie-Sulu UHP and IIP belts is proposed, involving continental subduction/collision between the Sino-Korean and Ya
An attempt is made to confirm the existence of the two discrete UHP and HP metamorphic belts in the central orogenic belt in China. Detailed geological mapping and structural and petrological analyses of the Kanfenggou (看丰沟 ) and Xiangfanggou ( 香坊沟 ) slices exposed in the eastern Qinling (秦岭) orogen indicate that they experienced ultrahigh pressure and high pressure metamorphism, respectively. The former, situated in northern Qinling, contains a large volume of fine-grained coesite and quartz pseudomorphs after coesite- and microdiamond-bearing eclogite lenses, whereas the latter, located in southern Qinling, preserves the relicts of a high pressure metamorphic mineral assemblage. Based on extensive fieldwork together with compilations at the scale of the orogenic belt, and a comparison of Pb isotopic compositions between the UHP metamorphic rocks from Kanfenggou slice and the Dabie UHP metamorphic belt, we propose that there are at least two discrete ultrahigh pressure metamorphic belts with different ages and tectonic evolution within the central orogenic belt in China. The first is the South AItun-North Qaidam-North Qinling ultrahigh pressure metamorphic belt of Early Paleozoic age ( -500 -400 Ma). The Kanfenggou ultrahigh pressure slab is located at its eastern segment. The second is the well constrained Dabie ( 大别 )-Sulu (苏鲁 ) ultrahigh/high pressure metamorphic belt of Triassic age (-250-220 Ma). The Xiangfanggou high pressure metamorphic slab is a westward extension of the Dabie-Sulu ultrahigh/high pressure metamorphic belt. The Pb isotopic compositions of the UHP metamorphic rocks from Kanfenggou UHP fragment in East Qinling are different from those of the UHP rocks in Dabie UHP metamorphic belt, but are consistent with those of the rocks from the Qinling rock group and Erlangping (二郎坪) rock group. The East Qinling UHP metamorphic belt does not appear to link with the Dabie-Sulu UHP metamorphic belt. These two ultrahigh metamorphic belts are se