Redox-active polyelectrolyte-surfactant complexes(PSC) were prepared via the ionic self-assembly of sodium poly(styrenesulfonate) (PSS) and ferrocenyl surfactant,(11-ferrocenylundecyl)trimethylammonium bromide(FTMA) in aqueous solution. The PSS-FTMA complex exhibited an ordered interdigitated monolayer mesomorphous structure with the long period of d = 3.13 nm,and was in the ionic thermotropic liquid crystal SmA state at room temperature.Interestingly,in the solid complex, the ferrocenyl moieties formed H-aggregation showing an increase in theπ-π~* energy transfer of cyclopentadienes in the ferrocene moieties as known from the blue-shift in the UV spectrum.The complexes showed higher thermal stability compared with their components due to the ionic interaction.The PSS-FTMA film had a good redox reversibility,which promised to be used in electrochemical sensors.
Three novel redox-active percec-type dendrons were synthesized by mucleophilic substitution reaction of 11-bromoundecyl ferrocene and substituted benzoate.All the resultant ferrocenyl-modified dendrons were confirmed through FT-IR,NMR,and elemental analysis,etc.Furthermore,the thermal properties and electrochemical behavior of these dendrons were monitored with thermogravimetry analysis(TG),differential scanning calorimetry(DSC),polarized optical microscope(POM),and cyclic voltammetry(CV). Abound phase behavior and reversible electrochemical redox reaction process in the DMF solution of these dendrons was observed.