作为DNA序列的重要组成特征,基因组寡核苷酸使用模式及其偏倚的研究已被广泛应用于原核生物基因组的分析。然而,关于寡核苷酸使用模式的偏倚是否具有种群特异性并反映种群的功能这一问题,尚未阐明。我们基于一阶马尔可夫链模型,提出了一个度量寡核苷酸使用模式偏倚的新指标——基因组三核苷酸(trinucleotide,tri-)转移概率偏倚(transition probability bias,TPB)特征向量,或称之为三核苷酸转移概率最大偏倚分布,并分析比较了727条有代表性的原核生物基因组序列tri-TPB特征向量。结果表明,基因组tri-TPB特征向量具有物种特异性,亲缘关系越近的物种,它们的tri-TPB特征向量越相似;同种内的不同菌株具有几乎完全相同的tri-TPB特征向量,并且不依赖于基因组的GC含量;此外,基因组tri-TPB特征向量的相似性与菌株的致病性特征相关。本研究结果为基于全基因组寡核苷酸组成和分布信息的物种及其致病性进化分析提供了新的思路和方法。
Circulating leukocytes in trafficking to the inflammatory sites, will be first tether to, and then roll on the vascular surface. This event is mediated through specific interaction of P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1), and regulated by hemodynamics. Poor data were reported in understanding P-selectin-mediated rolling. With the flow chamber technique, we herein observed HL-60 cell rolling on P-selectin with or without 3% Ficoll at various wall shear stresses from 0.05 to 0.4 dyn/cm:. The results demonstrated that force rather than transport regulated the rolling, similar to rolling on L- and E-selectin. The rolling was accelerated quickly by an increasing force below the optimal shear threshold of 0.15 dyn/cm2 first and then followed by a slowly decelerating phase starting at the optimum, showing a catch-slip transition and serving as a mechanism for the rolling. The catch-slip transition was completely reflected to the tether lifetime and other rolling parameters, such as the mean and fractional stop time. The narrow catch bond regime stabilized the rolling quickly, through steeply increasing frac- tional stop time to a plateau of about 0.85. Data presented here suggest that the low shear stress threshold serves as a mecha- nism for most cell rolling events through P-selectin.