您的位置: 专家智库 > >

国家自然科学基金(61201134)

作品数:16 被引量:58H指数:5
相关作者:付卫红刘乃安韦娟杨博吴俊更多>>
相关机构:西安电子科技大学西安中电科西电科大雷达技术协同创新研究院有限公司航天恒星科技有限公司更多>>
发文基金:国家自然科学基金高等学校学科创新引智计划国家高技术研究发展计划更多>>
相关领域:电子电信自动化与计算机技术自然科学总论更多>>

文献类型

  • 16篇中文期刊文章

领域

  • 15篇电子电信
  • 1篇自动化与计算...
  • 1篇自然科学总论

主题

  • 5篇信号
  • 5篇跳频
  • 4篇跳频信号
  • 4篇盲源分离
  • 3篇压缩采样
  • 3篇盲分离
  • 3篇盲估计
  • 3篇BEAMFO...
  • 3篇采样
  • 3篇HYBRID
  • 2篇压缩感知
  • 2篇压缩域
  • 2篇欠定
  • 2篇盲分离算法
  • 2篇盲估计算法
  • 2篇卷积
  • 2篇感知
  • 2篇SOURCE
  • 2篇BASED_...
  • 2篇MIMO_S...

机构

  • 10篇西安电子科技...
  • 4篇西安中电科西...
  • 1篇航天恒星科技...
  • 1篇电子信息系统...

作者

  • 9篇付卫红
  • 4篇刘乃安
  • 2篇韦娟
  • 1篇张妍飞
  • 1篇沈常林
  • 1篇杨博
  • 1篇吴俊

传媒

  • 4篇北京邮电大学...
  • 3篇The Jo...
  • 2篇电子与信息学...
  • 2篇China ...
  • 1篇通信学报
  • 1篇华中科技大学...
  • 1篇计算机仿真
  • 1篇西安电子科技...
  • 1篇Journa...

年份

  • 1篇2020
  • 1篇2019
  • 5篇2018
  • 5篇2017
  • 1篇2016
  • 2篇2015
  • 1篇2013
16 条 记 录,以下是 1-10
排序方式:
基于滑窗和原子字典的压缩域跳频信号参数估计算法被引量:6
2017年
现有跳频信号参数估计算法大多没有考虑跳频信号的结构特性,在低信噪比下存在计算复杂度高或估计精度低的缺点,针对这一问题,该文提出一种基于滑窗和原子字典的压缩域跳频信号参数估计算法。用滑窗法对所处理的跳频信号进行整周期滑动压缩采样,粗略估计出跳频信号的跳变时刻,以块对角化的傅里叶正交基作为稀疏基精确估计出跳变前后的频率,在此基础上构建可以表示跳频信号局部时频特性的原子字典,通过匹配追踪算法准确估计出跳频信号的跳变时刻。实验结果表明,该算法在显著降低信号采样数据量和计算复杂度的同时,保持了跳频信号参数的高精度估计。
付卫红张云飞韦娟刘乃安
关键词:跳频信号压缩采样参数估计
一种压缩域下的跳频信号盲识别新方法被引量:3
2013年
针对通信对抗中的跳频信号盲识别问题,提出了一种压缩域下的跳频信号盲识别方法.利用该方法直接处理压缩采样值,可以完成跳频信号识别任务.首先深入分析了压缩采样值在接收信号中有/无跳频信号两种不同假设下的数学期望的差异,将跳频信号采样值与其在各个假设下数学期望的偏差作为判决依据,完成识别任务,然后在不重构的前提条件下仅利用低速率压缩测量向量实现跳频频率的估计.仿真实验表明,该方法在信噪比高于-2dB环境下具有良好的识别效果,其频率归一化均方误差可以达到10-4量级,具有较高的频率估计精度.此外,相比于其他识别方法,该方法大大降低了数据量和算法复杂度,显著缩短了识别时间.
吴俊刘乃安沈常林张妍飞
关键词:压缩采样跳频频率估计
单通道盲源分离的研究现状与展望被引量:15
2017年
针对盲信号处理中一种极端的病态混叠情况,单通道盲源分离是一个近年受到广泛关注的重要研究方向,并且具有广泛的应用前景.首先阐述了单通道盲源分离的数学模型、可分离性分析和分离效果评价标准,然后在深入研究单通道盲源分离发展的基础上分类讨论和评估了一些现有的单通道盲源分离方法,在介绍各方法的基本原理、特征及应用的同时,指出当前单通道盲源分离技术所面临的问题与挑战.最后结合当前的研究状况对单通道盲源分离未来的发展及研究方向进行了分析.
付卫红周新彪农斌
关键词:盲源分离单通道信号处理
Low complexity asymptotically unitary algorithm for hybrid beamforming in mmWave communication systems被引量:1
2017年
In millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems, because of the high hardware cost and high power consumption, the traditional fully digital beamforming (DBF) cannot be implemented easily. Meanwhile, analog beamforming which is implemented with phase shifters has high availability but suffers poor performance. Considering the advantages of above two, a potential solution is to design an appropriate hybrid analog and digital beamforming structure, where the available iterative optimization algorithm can get performance close to fully digital processing, but solving this sparse optimization problem faces with a high computational complexity. The key challenge of seeking out hybrid beamforming (HBF) matrices lies in leveraging the trade-off between the spectral efficiency performance and the computational complexity. In this paper, we propose an asymptotically unitary hybrid precoding (AUHP) algorithm based on antenna array response (AAR) properties to solve the HBF optimization problem. Firstly, we get the optimal orthogonal analog and digital beamforming matrices relying on the channel's path gain in absolute value by taking into account that the AAR matrices are asymptotically unitary. Then, an improved simultaneously orthogonal matching pursuit (SOMP) algorithm based on recursion is adopted to refine the hybrid combining. Numerical results demonstrate that our proposed AUHP algorithm enables a lower computational complexity with negligible spectral efficiency performance degradation.
Li XiaohuiMeng MeimeiLin YingchaoHei Yongqiang
一种混合网台跳频参数盲估计算法被引量:4
2019年
针对低信噪比(SNR)和复杂电磁环境条件下跳频参数估计精度低及算法复杂度高的问题,提出了一种短时傅里叶变换(STFT)和平滑伪魏格纳分布(SPWVD)的组合时频分析方法.该算法首先利用STFT将天线接收信号变换到时频域,并对时频信号进行自适应降噪处理;通过自适应聚类算法进行频率的精估计;提取时频信息并剔除各类干扰,再通过网台分选后得到各类网台跳时粗估计;最后采用SPWVD及修正后的截断门限进行跳变时刻的精估计.仿真结果表明,该算法在混合网台和低SNR条件下,跳频参数估计精度较高,算法复杂度较低,有效解决了实际跳频通信系统存在频率转换时间条件下的参数估计问题。
付卫红胡展
关键词:跳频参数盲估计短时傅里叶变换
基于部分支撑集的L1范数稀疏重构算法被引量:5
2020年
针对压缩感知理论中,现有的优化L1范数稀疏重构算法在重构源信号时,当且仅当稀疏度小于等于观测信号长度一半时才能够正确重构源信号的问题,提出了部分支撑集的L1范数稀疏重构算法。改进算法采用线性规划方法最小化源信号"尾部"支撑集的L1范数,能够在稀疏度大于观测信号长度一半时正确重构出源信号。仿真结果表明,在不同信噪比和稀疏度条件下,所提算法的重构精度优于现有的优化L1范数的稀疏重构算法和正交匹配追踪的稀疏重构算法。
付卫红梁漠杨田德艳农斌
关键词:压缩感知线性规划
Algorithm for source recovery in underdetermined blind source separation based on plane pursuit被引量:1
2018年
In order to achieve accurate recovery signals under the underdetermined circumstance in a comparatively short time,an algorithm based on plane pursuit(PP) is proposed. The proposed algorithm selects the atoms according to the correlation between received signals and hyper planes, which are composed by column vectors of the mixing matrix, and uses these atoms to recover source signals. Simulation results demonstrate that the PP algorithm has low complexity and higher accuracy as compared with basic pursuit(BP), orthogonal matching pursuit(OMP), and adaptive sparsity matching pursuit(ASMP) algorithms.
FU WeihongWEI JuanLIU NaianCHEN Jiehu
Gram-Schmidt based hybrid beamforming for mm Wave MIMO systems
2016年
Due to the high cost and power consumption of the radio frequency(RF) chains, it is difficult to implement the full digital beamforming in millimeter-wave(mm Wave) multiple-input multiple-output(MIMO) systems. Fortunately, the hybrid beamforming(HBF) is proposed to overcome these limitations by splitting the beamforming process between the analog and digital domains. In recent works, most HBF schemes improve the spectral efficiency based on greedy algorithms. However, the iterative process in greedy algorithms leads to high computational complexity. In this paper, a new method is proposed to achieve a reasonable compromise between complexity and performance. The novel algorithm utilizes the low-complexity Gram-Schmidt method to orthogonalize the candidate vectors. With the orthogonal candidate matrix, the slow greedy algorithm is avoided. Thus, the RF vectors are found simultaneously without any iteration. Additionally, the phase extraction is applied to satisfy the element-wise constant-magnitude constraint on the RF matrix. Simulation results demonstrate that the new HBF algorithm can make substantial improvements in complexity while maintaining good performance.
Li XiaohuiLin YingchaoMeng MeimeiHei Yongqiang
Hybrid beamforming with discrete phase shifters for millimeter wave backhaul networks被引量:1
2018年
Hybrid beamforming( HBF) technology becomes one of the key technologies in the millimeter wave( mm Wave)mobile backhaul systems,for its lower complexity and low power consumption compared to full digital beamforming( DBF). Two structures of HBF exist in the mm Wave mobile backhaul system,namely,the fully connected structures( FCS) and partially connected structures( PCS). However,the existing methods cannot be applied to both structures. Moreover,the ideal phase shifter is considered in some current HBF methods,which is not realistic. In this paper,a HBF algorithm for both structures based on the discrete phase shifters is proposed in the mm Wave mobile backhaul systems. By using the principle of alternating minimization,the optimization problem of HBF is decomposed into a DBF optimization problem and an analog beamforming( ABF) optimization problem.Then the least square( LS) method is enabled to solve the optimization model of DBF. In addition,the achievable data rate for both structures with closed-form expression which can be used to convert the optimization model into a single-stream beamforming optimization model with per antenna power constraint is derived. Therefore,the ABF is easily solved. Simulation results show that the performance of the proposed HBF method can approach the full DBF by using a lower resolution phase shifter.
Yuan JiangweiLi XiaohuiPu WenjuanYang Xu
Source Recovery in Underdetermined Blind Source Separation Based on Artificial Neural Network被引量:3
2018年
We propose a novel source recovery algorithm for underdetermined blind source separation, which can result in better accuracy and lower computational cost. On the basis of the model of underdetermined blind source separation, the artificial neural network with single-layer perceptron is introduced into the proposed algorithm. Source signals are regarded as the weight vector of single-layer perceptron, and approximate ι~0-norm is taken into account for output error decision rule of the perceptron, which leads to the sparse recovery. Then the procedure of source recovery is adjusting the weight vector of the perceptron. What's more, the optimal learning factor is calculated and a descent sequence of smoothed parameter is used during iteration, which improves the performance and significantly decreases computational complexity of the proposed algorithm. The simulation results reveal that the algorithm proposed can recover the source signal with high precision, while it requires lower computational cost.
Weihong FuBin NongXinbiao ZhouJun LiuChangle Li
共2页<12>
聚类工具0