A discrete artificial bee colony algorithm is proposed for solving the blocking flow shop scheduling problem with total flow time criterion. Firstly, the solution in the algorithm is represented as job permutation. Secondly, an initialization scheme based on a variant of the NEH (Nawaz-Enscore-Ham) heuristic and a local search is designed to construct the initial population with both quality and diversity. Thirdly, based on the idea of iterated greedy algorithm, some newly designed schemes for employed bee, onlooker bee and scout bee are presented. The performance of the proposed algorithm is tested on the well-known Taillard benchmark set, and the computational results demonstrate the effectiveness of the discrete artificial bee colony algorithm. In addition, the best known solutions of the benchmark set are provided for the blocking flow shop scheduling problem with total flow time criterion.
Scheduling problem is a well-known combinatorial optimization problem.An effective improved estimation of distribution algorithm(IEDA) was proposed for minimizing the makespan of the unrelated parallel machine scheduling problem(UPMSP).Mathematical description was given for the UPMSP.The IEDA which was combined with variable neighborhood search(IEDA_VNS) was proposed to solve the UPMSP in order to improve local search ability.A new encoding method was designed for representing the feasible solutions of the UPMSP.More knowledge of the UPMSP were taken consideration in IEDA_ VNS for probability matrix which was based the processing time matrix.The simulation results show that the proposed IEDA_VNS can solve the problem effectively.
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.