The variations of magnetization and magneto- striction with temperature and stress were investigated through the analysis of the effective field, induced by temperature and stress. A nonlinear magnetostrictive model of giant magnetostrictive materials was proposed. The proposed model can be used to calculate the magnetostrictive characterization of giant magnetostrictive materi- als in different temperatures and under different stresses. The coupling effects of axial stress, magnetic field, and temperature on the magnetostriction of a Terfenol-D rod were numerically simulated as well as experimentally tested. Comparison between the calculating and experimental results shows that the proposed model can better describe the magneto-thermo-mechanical characteristics of Terfenol-D rod under different temperatures and compressive stress. Therefore, the proposed model possesses an important significance for the design of magnetostrictive devices.
Li WangBo-Wen WangZhi-Hua WangLing WengWen-Mei HuangYan Zhou