Since many large graphs are composed from some existing smaller graphs by using graph operations, say, the Cartesian product, the Lexicographic product and the Strong product. Many properties of such large graphs are closely related to those of the corresponding smaller ones. In this short note, we give some properties of the Strong product of vertex-transitive graphs. In particular, we show that the Strong product of Cayley graphs is still a Cayley graph.
A vertex-colored graph G is said to be rainbow vertex-connected if every two vertices of G are connected by a path whose internal vertices have distinct colors, such a path is called a rainbow path. The rainbow vertex-connection number of a connected graph G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex-connected. If for every pair u, v of distinct vertices, G contains a rainbow u-v geodesic, then G is strong rainbow vertex-connected. The minimum number k for which there exists a k-vertex-coloring of G that results in a strongly rainbow vertex-connected graph is called the strong rainbow vertex-connection number of G, denoted by srvc(G). Observe that rvc(G) ≤ srvc(G) for any nontrivial connected graph G. In this paper, for a Ladder L_n,we determine the exact value of srvc(L_n) for n even. For n odd, upper and lower bounds of srvc(L_n) are obtained. We also give upper and lower bounds of the(strong) rainbow vertex-connection number of Mbius Ladder.