The dynamic parameters of permafrost are crucial to and directly affect the accuracy of engineering design and numerical simulation. This paper describes a new dynamic load direct shear apparatus that was developed to measure these parameters. The power systems and measurement and control systems of the device are described, as is a successful validation experiment. The results show that this dynamic load direct shearing device can accurately derive dynamic shear parameters within a certain range of frequencies and ampli- tudes of shear load.
A coupled water and heat transport mode is established based on the Richards equation to study water flow and heat transport in soil during freezing process. Both the finite difference and finite element method are used in the discretization, respectively. Two different computer programs are written and used to simulate an indoor unidirectional frozen test. The freezing depth, freezing rate and temperature variation are compared among lab tests, finite difference calculation simulation and finite element calculation simulation. Result shows that: the finite difference method has a better performance in freezing depth simulation while the finite element method has a better performance in numerical stability in one-dimensional freezing simulation.
Crushed rock subgrade, as one of the roadbed-cooling methods, has been widely used in the Qinghai-Tibet Railway. Much attention has been paid on the cooling effect of crushed rock; however, the mechanical properties of crushed rock are somehow neglected. Based on the discrete element method, biaxial compression test condition for crushed rock is com- piled in FISH language in PFC2D, and the natural shape of crushed rock is simulated with super particle "cluster". The ef- fect of particle size, crushed rock strength and confining pressure level on overall mechanical properties of the crushed rock aggregate are respectively analyzed. Results show that crushed rock of large particle size plays an essential frame- work role, which is mainly responsible for the deformation of crushed rock aggregate. The strength of gravel has a great influence on overall mechanical properties which means that strength attenuation caused by the freeze thaw cycles cannot be ignored. The stress-strain curves can be divided into two stages including shear contraction and shear expansion at different confining pressures.
The mechanical property of saline soils varies with moisture and climate in the cold and salt lake region of Qinghai-Tibet Plateau, which influences project construction. In order to improve foundation reinforcement effect of the QarharvaTrolmud Highway, Qinghai Province, China, dynamic compaction replacement (DCR) composite foundation was applied in saline soils. A field experiment was conducted in this area, where strength and working mechanism of pier-soil and deformation modulus of the composite foundation was analyzed after reinforcement. This paper presents methods for determining the coefficient on the bearing capacity evaluation and deformation modulus of composite foundation with DC1L Reinforcement case of DCR is highly effective in saline soils of the salt lake regions, which helps the mi-tion of water and salt in saline soils.