For the matrix product system of a one-dimensional spin-1/2 chain, we present a new model of quantum2 phase transitions and find that in the thermodynamic limit, both sides of the critical point are respectively described by phases |Ψa 〉=|1··· 1 representing all particles spin up and |Ψb 〉=|0··· 0 representing all particles spin down, while the phase transition point is an isolated intermediate-coupling point where√ the two phases coexist equally, which is2 described by the so-called N-qubit maximally entangled GHZ state |Ψpt =√2/2(|1··· 1 +|0··· 0). At the critical point,2the physical quantities including the entanglement are not discontinuous and the matrix product system has longrange correlation and N-qubit maximal entanglement. We believe that our work is helpful for having a comprehensive understanding of quantum phase transitions in matrix product states of one-dimensional spin chains and of potential directive significance to the preparation and control of one-dimensional spin lattice models with stable coherence and N-qubit maximal entanglement.
We study the entanglement property in matrix product spin-ring systems systemically by von Neumann entropy. We find that: (i) the Hilbert space dimension of one spin determines the upper limit of the maximal value of the entanglement entropy of one spin, while for multiparticle entanglement entropy, the upper limit of the maximal value depends on the dimension of the representation matrices. Based on the theory, we can realize the maximum of the entanglement entropy of any spin block by choosing the appropriate control parameter values. (ii) When the entanglement entropy of one spin takes its maximal value, the entanglement entropy of an asymptotically large spin block, i.e. the renormalization group fixed point, is not likely to take its maximal value, and so only the entanglement entropy Sn of a spin block that varies with size n can fully characterize the spin-ring entanglement feature. Finally, we give the entanglement dynamics, i.e. the Hamiltonian of the matrix product system.
We present a new model of quantum phase transitions in matrix product systems of one-dimensional spin-1 chains and study the phases coexistence phenomenon. We find that in the thermodynamic limit the proposed system has three different quantum phases and by adjusting the control parameters we are able to realize any phase, any two phases equal coexistence and the three phases equM coexistence. At every critical point the physical quantities including the entanglement are not discontinuous and the matrix product system has long-range correlation and N-spin maximal entanglement. We believe that our work is helpful for having a comprehensive understanding of quantum phase transitions in matrix product states of one-dimensional spin chains and of certain directive significance to the preparation and control of one-dimensional spin lattice models with stable coherence and N-spin maximal entanglement.