A novel hybrid FRP-aluminum space truss was employed in a two-rut modular bridge superstructure, which is composed of standard structural units. The main objective of this work was to obtain a simple analytical solution that can conveniently predict the deflection of the proposed hybrid space truss bridge. The analytical formulae are expected to possess a straightforward format and simple calculation process. A simple description of the proposed bridge was introduced. The design formulae of the deflection were derived based on a simplified analytical plane truss model, which possessed hinge nodes and was subsequently simplified as two solid web beams during the theoretical derivation process. To validate the analytical model and formulae, numerical and experimental works were conducted and compared with the theoretical solutions. The results indicate that the analytical formulae provide higher deflection magnitudes with a difference of <1.5% compared with the experiments performed and <4.5% compared with the FE model used; the simplified plane truss is thus shown to be an effective analytical model for the derivation of deflection design formulae, which can conveniently calculate the deflection of the hybrid space truss bridge with satisfactory accuracy.