The reaction mechanisms between formaldehyde and MoOx(x = 1, 2, 3) have been studied thoroughly in this paper. Five reaction pathways were found in three reactions(reactions Ⅰ to Ⅲ) through studying the mechanisms of MoOx(x = 1, 2, 3) catalyzing formaldehyde. Different products were obtained from three reactions. Of all three reactions, the barrier energy of Route ⅡA is the lowest(4.70 kcal/mol), which means in MoOx(x = 1, 2, 3), MoO2 has the best catalytic effect. Compared with other similar non-toxic treatments of formaldehyde, our barrier energy is the lowest. In this research, there was no good leaving group of the compound, so the mechanisms are addition reaction. We speculate that there must be an addition reaction to the more complex reactions to molybdenum oxides and aldehydes. As a chemical reagent for removing formaldehyde, it only absorbs formaldehyde and does not emit other toxic substances outward. Molybdenum oxides retain its original structures of the final products, which means it has excellent stability in the reaction of MoOx(x = 1, 2, 3) + HCHO. The mechanisms of all three reactions are addition reactions, but they are entirely different. As the number of oxygen atoms increases, the reaction mechanisms become simpler.
Marine aerosols play an important role in the global aerosol system.In polluted coastal regions,ultra-fine particles have been recognized to be related to iodine-containing species and is more serious due to the impact of atmospheric pollutants.Many previous studies have identified iodine pentoxide(I_(2)O_(5),IP)to be the key species in new particles formation(NPF)in marine regions,but the role of IP in the polluted coastal atmosphere is far to be fully understood.Considering the high humidity and concentrations of pollutants in the polluted coastal regions,the gas-phase hydration of IP catalyzed by sulfuric acid(SA),nitric acid(NA),dimethylamine(DMA),and ammonia(A)have been investigated at DLPNO-CCSD(T)//ωB97 XD/aug-cc-pVTZ+aug-cc-pVTZ-PP with ECP28 MDF(for iodine)level of theory.The results show that the hydration of IP involves a significant energy barrier of 22.33 kcal/mol,while the pollutants SA,NA,DMA,and A all could catalyze the hydration of IP.Especially,with SA and DMA as catalysts,the hydration reactions of IP present extremely low barriers and high rate constants.It is suggested that IP is unstable under the catalysis of SA and DMA to generate iodic acid,which is the key component in NPF in marine regions.Thus,the catalytic hydration of IP is very likely to trigger the formation of iodine-containing particles.Our research provides a clear picture of the catalytic hydration of IP as well as theoretical guidance for NPF in the polluted coastal atmosphere.
Yan LiangHui RongLing LiuShaobing ZhangXiuhui ZhangWenguo Xu
A dynamic method is employed to study the reaction mechanisms of CH3CH2OCF3 with the hydrogen trioxy (HOOO) radical. In our paper, the geometries and harmonic vibrational frequencies of all the stationary points and minimum energy paths (MEPs) are calculated at the MPW1K/6-31+G(d,p) level of theory, and the energetic information along MEPs is further refined by the CCSD/6-31+G(df, p) level of theory. The rate constants are evaluated with the conventional transition-state theory (TST), the canonical variational transition-state theory (CVT), the microcanonical variational transition-state theory (μVT), the CVT coupled with the small-curvature tunneling (SCT) correction (CVT/SCT), and the μVT coupled with the Eckart tunneling correction μVT/Eckart) based on the ab initio calculations in the temperature range of 200-3000 K. The theoretical results are important in determining the atmospheric lifetime and the feasible pathways for the loss of HFEs.
The effects of magnetic fields on electrochemical processes have made a great impact on both theoretical and practical significances in im- proving capacitor performance. In this study, active carbon/Fe304-NPs nanocomposites (AC/Fe304-NPs) were synthesized using a facile hy- drothermal method and ultrasonic technique. Transmission electron micrographs (TEM) showed that Fe304 nanoparticles (Fe304-NPs) grew along the edge of AC. AC/Fe304-NPs nanocomposites were further used as an electrochemical electrode, and its electrochemical performance was tested under magnetization and non-magnetization conditions, respectively, in a three-electrode electrochemical device. Micro-magnetic field could improve the electric double-layer capacitance, reduce the charge transfer resistance, and enhance the discharge performance. The capacitance enhancement of magnetized electrode was increased by 33.1% at the current density of 1 A/g, and the energy density was improved to 15.97 Wh/kg, due to the addition of magnetic particles.
This paper systematically studies the reaction mechanisms of formic acid catalyzed by transition metal oxide MoO. Three different reaction pathways of Routes I, Ⅱ and Ⅲ were found through studying the reaction mechanism of transition metal oxide MoO catalyzing the formic acid. The transition metal oxide MoO interacts with the C=O double bond to form chiral chain compounds(Routes I and Ⅱ) and metallic compound MoOH2(Route Ⅲ). In this paper, we have studied the mechanisms of two addition reaction pathways and hydrogen abstraction reaction pathway. Routes I and Ⅱ are both addition reactions, and their products are two different chiral compounds MoO3CH2, which are enantiomeric to each other. In Route Ⅲ, metal compounds MoOH2 and CO2 are obtained from the hydrogen abstraction reaction. Among them, the hydrogen abstraction reaction occurring in Route Ⅲ is more likely to occur than the others. By comparing the results of previous studies on the reaction of MxOy-+ ROH(M= Mo,W; R = Me, Et), we found that the hydrogen abstraction mechanism is completely different from the mechanism of oxygen-containing organic compound catalyzed by MxOy.