The deformation resistance effect of polyacrylonitrile (PAN)-based carbon fibers was investigated, and the variatipn law of electrical resistivity under tensile stress was analyzed. The results show that the gauge factor (fractional change in resistance per unit strain) of PAN-based carbon fibers is 1.38, which is lower than that of the commonly-used resistance strain gauge. These may due to that the electrical resistivity of carbon fibers decreases under tensile stress. In addition when the carbon fibers are stretched, the change of its resistance is caused by fiber physical dimension and the change of electric resistivity, and mainly caused by the change of physical dimension. The mechanical properties of carbon fiber monofilament were also measured.
The electrical conductivity and piezoresistivity of carbon fiber graphite cement-matrix composites(CFGCC) with carbon fiber content(1% by the weight of cement),graphite powder contents (0%-50% by the weight of cement) and CCCW(cementitious capillary crystalline waterproofing materials,4% by the weight of cement) were studied.The experimental results showed that the relationship between the resistivity of CFGCC and the concentration of graphite powders had typical features of percolation phenomena.The percolation threshold was about 20%.A clear piezoresistive effect was observed in CFGCC with 1wt% of carbon fibers,20wt% or 30wt% of graphite powders under uniaxial compressive tests,indicating that this type of smart composites was a promising candidate for strain sensing.The measured gage factor (defined as the fractional change in resistance per unit strain) of CFGCC with graphite content of 20wt% and 30wt% were 37 and 22,respectively.With the addition of CCCW,the mechanical properties of CFGCC were improved,which benefited CFGCC piezoresistivity of stability.