Three-dimensional-printed(3 D-P) titanium implants display many advantages, such as design flexibility,higher efficiency, the capability to easily construct complex or customized structures, etc., and is believed to potentially replace traditional implants. However, the biological performance of the 3 D-P titanium surface has not been investigated systematically. Herein, we analyzed the surface characteristics of 3 D-P Ti6 Al4 V implants and evaluated the biological responses of bone marrow derived mesenchymal stromal cells(BMSCs) to the 3 D-P surface in vitro. Moreover, after implantation into the rat femoral condyle for3 and 6 weeks, the osseointegration performance was evaluated. The results showed the 3 D-P Ti6 Al4 V implant presented distinct fluctuant macroscale rough surface and relatively better hydrophilicity which enhanced the adhesion, proliferation, osteogenic differentiation and angiogenetic factor expression of BMSCs. Moreover, the in vivo osseointegration performance was also better than that of the control group at the early stage. The present study suggested the 3 D-P titanium alloy is a promising candidate to be used as implant material.