The topological characteristics for the basic system of equations of atmospheric motion were analyzed with the help of method provided by stratification theory. It was proved that in the local rectangular coordinate system the basic system of equations of atmospheric motion is stable in infinitely differentiable function class. In the sense of local solution, the necessary and sufficient conditions by which the typical problem for determining solution is well posed were also given. Such problems as something about "speculating future from past" in atmospheric dynamics and how to amend the conditions for determining solution as well as the choice of underlying surface when involving the practical application were further discussed. It is also pointed out that under the usual conditions, three motion equations and continuity equation in the basic system of equations determine entirely the property of this system of equations.
Some conclusions about the smooth function classes stability for the basic system of equations of atmospheric motion and instability for Navier-Stokes equation are summarized. On the basis of this, by taking the basic system of equations of atmospheric motion via Boussinesq approximation as example to explain in detail that the instability about some simplified models of the basic system of equations for atmospheric motion is caused by the instability of Navier-Stokes equation, thereby, a principle to guarantee the stability of simplified equation is drawn in simplifying the basic system of equations.
Applying the theory Of stratification, it is proved that the system of the two-dimensional non-hydrostatic revolving fluids is unstable in the two-order continuous function class. The construction of solution space is given and the solution approach is offered. The sufficient and necessary conditions of the existence of formal solutions are expressed for some typical initial and boundary value problems and the calculating formulae to formal solutions are presented in detail.