We reported on the successful synthesis of the Nd:YAG (Nd:Y3Al5O12) nano-powders by using urea as the precipitant with the microwave assisted homogeneous precipitation (MAHP) method. The different microstructural characteristics of the Nd:YAG nano-powders were affected by the concentrations of (Y3++Nd3+) and Al3+ ([Y3++Nd3+]=0.06 mol/L, [Al3+]=0.1 mol/L), aging time (6 d) and aging condition (in vessel). The optimum microstructural characteristics of the high quality Nd:YAG nano-powders leading to transparent Nd:YAG ceramics including the pure YAG phase, the smallest crystallite size, a uniform crystallite size distribution, less density defects, uniform micro-components and the proper molar ratio of (Y3++Nd3+) and Al3+ (0.6148) were discussed.
We report the laser output of transparent Nd:YAG (Nd:Y3Al5O12) ceramics fabricated from Nd:YAG precursors through the microwave-assisted homogenous precipitation (MAHP) method. Pure phase and uniform Nd:YAG nano-powders with average sizes less than 100 nm were obtained by heating treatment of.the Nd:YAG precursor particles aged for 6 d in vessel with humidity of 30%-50% at 25℃. Transparent Nd:YAG ceramic pellets were obtained by vacuum sintering at 1730℃ for 10 h. Laser output (305 roW) with a slope efficiency of 5.1% was realized through an end-pumped configuration. Our results indicate that the MAHP method could potentially be used for the fabrication of laser ceramic products,
ZHANG Xiaolin LIU Duo WANGJiyang YU Haohai QIN Haiming SANG Yuanhua LIU Hong