The stereodynamics of the reaction of Ca + HCl are calculated at three different collision energies based on the potential energy surface [Verbockhaven G et al. 2005 J. Chem. Phys. 122 204307] using quasi-classical trajectory theory. The polarization-dependent differential cross sections (PDDCSs) (2π/σ )(dσ 00 /dω t ), (2π/σ )(dσ 20 /dωt ), (2π/σ )(dσ 22+ /dωt ), (2π/σ )(dσ 21 /dω t ) and the distributions of P(θ r ), P(φr ), and P(θr ,φr ) are calculated. The results indicate that the rotational polarization of the CaCl product presents different characteristics for the different collision energies, and the effects of the collision energy on the vector potential, including the alignment, orientation, and PDDCSs, are not obvious.
A full-dimensional analytical potential energy surface (APES) for the F + CH4 →HF + CH3 reaction is developed based on 7127 ab initio energy points at the unrestricted coupled-cluster with single, double, and perturbative triple excitations. The correlation-consistent polarized triple-split valence basis set is used. The APES is represented with a many-body expansion containing 239 parameters determined by the least square fitting method. The two-body terms of the APES are fitted by potential energy curves with multi-reference configuration interaction, which can describe the diatomic molecules (CH, H2, HF, and CF) accurately. It is found that the APES can reproduce the geometry and vibrational frequencies of the saddle point better than those available in the literature. The rate constants based on the present APES support the experimental results of Moore et al. [Int. J. Chem. Kin. 26, 813 (1994)]. The analytical first-order derivation of energy is also provided, making the present APES convenient and efficient for investigating the title reaction with quasiclassical trajectory calculations.
Quasiclassical trajectory (QCT) calculations are first carried out to study the stereodynamics of the S (3p) + H2 → SH + H reaction based on the ab initio 13Atr potential energy surface (PES) (Lii etal. 2012 J. Chem. Phys. 136 094308). The QCT-calculated reaction probabilities and cross sections for the S + H2 (v = 0, j = 0) reaction are in good agreement with the previous quantum mechanics (QM) results. The vector properties including the alignment, orientation, and polarization- dependent differential cross sections (PDDCSs) of the product SH are presented at a collision energy of 1.8 eV. The effects of the vibrational and rotational excitations of reagent on the stereodynamics are also investigated and discussed in the present work. The calculated QCT results indicate that the vibrational and rotational excitations of reagent play an important role in determining the stereodynamic properties of the title reaction.
The quasi-classical trajectory (QCT) is calculated to study the stereodynamics properties of the title reaction H(^2S) + NH (X^3 ∑^-, v = 0, j = 0)→ N(^4S) + H2 on the ground state ^4A″ potential energy surface (PES) constructed by Zhai and Han [2011 Jr. Chem. Phys. 135 104314]. The calculated QCT reaction probabilities and cross sections are in good agreement with the previous theoretical results. The effects of the collision energy on the k-kt distribution and the product polarization of H2 are studied in detail. It is found that the scattering direction of the product is strongly dependent on the collision energy. With the increase in the collision energy, the scattering directions of the products change from backward scattering to forward scattering. The distribution of P(Or) is strongly dependent on the collision energy below the lower collision energy (about 11.53 kcal/mol). In addition, the P((Pr) distribution dramatically changes as the collision energy increases. The calculated QCT results indicate that the collision energy plays an important role in determining the stereodynamics of the title reaction.
This paper investigates the effect of basis sets through the potential energy curves (PECs) of six rare gas complexes He2, Ne2, Ar2, HeiNe, He-Ar, and Ne-Ar. The coupled cluster singles and doubles method with perturbative treatment of triple excitations, doubly augmented basis sets of d-aug-cc-pVQZ, bond functions, and basis set superposition errors are employed. The diffuse function is more effective than the polarization function on describing the dissociation energy. The PECs are fitted into analytical potential energy functions (APEFs) using three expressions. It is found that all the expressions are suitable for describing the complexes of rare gases. Based on these APEFs, the spectroscopic parameters are calculated and the results are compared with the theoretical and experimental data available in the literature.
Using density functional theory and quantum transport calculations based on nonequilibum Green's function formalism, we investigate the charge transport properties of endohedral M@C20(M = Na and K) metallofullerenes. Our results show that the conductance of C20 fullerene can be obviously improved by insertion of alkali atom at its centre. Both linear and nonlinear sections are found on the Ⅰ-Ⅴ curves of the Au-M@C20-Au two-probe systems. The novel negative differential resistance behaviour is also observed in Na@C20 molecule but not in K@C20.
The potential energy curves (PECs) of the 3Π states of GaX (X=F, Cl, and Br) molecules are calculated using the multireference configuration interaction method with a large contracted basis set aug-cc-pV5Z. The PECs are accurately fitted to analytical potential energy functions (APEFs) using the Murrell–Sorbie potential function. The spectroscopic parameters for the states are determined using the obtained APEFs, and compared with the theoretical and experimental data available presently in the literature.
The interactions of acetone molecules with clusters of Au3 and Au5 are investigated by using a density functional theory (DFT) within a generalized gradient approximation (GGA). The geometries, adsorption energies and deformation electron density distributions are used to analyse these interactions. The present calculations show that more than one acetone molecules can be adsorbed onto small gold clusters, and this adsorption is different from that of single molecule absorption. The coordination number of the adsorption site on the gold cluster is the dominant factor responsible for the strength of the interactions. The effects of the Au O bond lengths in the complexes on adsorption energies between Au clusters and acetone molecules are also examined.