Dynamic processes occurring in solar active regions are dominated by the solar magnetic field. As of now, observations using a solar magnetograph have supplied us with the vector components of a solar photospheric magnetic field. The two transverse components of a photospheric magnetic field allow us to compute the amount of electric current. We found that the electric current in areas with positive (negative) polarity due to the longitudinal magnetic field have both positive and neg- ative signs in an active region, however, the net current is found to be an order-of- magnitude less than the mean absolute magnitude and has a preferred sign. In particu- lar, we have statistically found that there is a systematic net electric current from areas with negative (positive) polarity to areas with positive (negative) polarity in solar ac- tive regions in the northern (southern) hemisphere, but during the solar minimum this tendency is reversed over time at some latitudes. The result indicates that there is weak net electric current in areas of solar active regions with opposite polarity, thus provid- ing further details about the hemispheric helicity rule found in a series of previous studies.
We analyzed the correlation of the solar magnetograms and Dopplergrams from SOHO/MDI and SDO/HMI respectively. It is found that the full disk correlation coefficient of Dopplergrams is more than 0.80 between SOHO/MDI and SDO/HMI. The full disk correlation coefficient of magnetograms is about 0.73 and is more than 0.95 for active regions only. We also analyzed the distribution of the cross helicity (velocity-magnetic-field correlation) on the solar surface. It is found that the latitude distributions of the cross helicity based on SOHO/MDI data and SDO/HMI data have similar tendencies, and in the analysis of solar active regions the amplitude of the horizontal component of the mean cross helicity is about two times the line-of-sight one.