The surface waves generated by unsteady concentrated disturbances in an initially quiescent fluid of infinite depth with an inertial surface are analytically investigated for two- and three-dimensional cases. The fluid is assumed to be inviscid, incompressible and homogenous. The inertial surface represents the effect of a thin uniform distribution of non-interacting floating matter. Four types of unsteady concentrated disturbances and two kinds of initial values are considered, namely an instantaneous/oscillating mass source immersed in the fluid, an instantaneous/oscillating impulse on the surface, an initial impulse on the surface of the fluid, and an initial displacement of the surface. The linearized initial-boundary-value problem is formulated within the framework of potential flow. The solutions in integral form for the surface elevation are obtained by means of a joint Laplace-Fourier transform. The asymptotic representations of the wave motion for large time with a fixed distance- to-time ratio are derived by using the method of stationary phase. The effect of the presence of an inertial surface on the wave motion is analyzed. It is found that the wavelengths of the transient dispersive waves increase while those of the steady-state progressive waves decrease. All the wave amplitudes decrease in comparison with those of conventional free-surface waves. The explicit expressions for the freesurface gravity waves can readily be recovered by the present results as the inertial surface disappears.
The fundamental solutions of the Stokes/Oseen equations due to a point force in an unbounded viscous fluid are referred to as the Stokeslet/Oseenlet,for which a systematic derivation are analytically presented here in terms of a uniform expression.By means of integral transforms,the closed-form solutions are explicitly deduced in a formula which involves the Hamiltonian,Hessian,and Laplacian operators,and elementary functions.Secondly,interfacial viscous capillary-gravity waves between two semi-infinite fluids due to oscillating singularities,including a simple source in the upper inviscid fluid and a Stokeslet in the low viscous fluid,were analytically studied by the Laplace-Fourier integral transform and asymptotic analysis.The dynamics responses consist of the transient and steady-state components,which are dealt with by the method of stationary phase and the Cauchy residue theorem,respectively.The transient response is made up of one short capillarity・dominated and one long gravity-dominated wave with the former riding on the latter.The steady-state wave has the same frequency as that of oscillating singularities.Asymptotic solutions for the wave profiles and the exact solution for the wave number are analytically derived,which show the combined effects of fluid viscosity,surface capillarity and an upper layer fluid.
The dynamic response of an ice-covered fluid to transient disturbances was analytically investigated by means of integral transforms and the generalized method of stationary phase. The initially quiescent fluid of finite depth was assumed to be inviscid, incompressible, and homogenous. The thin ice-cover was modeled as a homogeneous elastic plate. The disturbances were idealized as the fundamental singularities. A linearized initial-boundary-value problem was formulated within the framework of potential flow. The perturbed flow was decomposed into the regular and the singular components. An image system was introduced for the singular part to meet the boundary condition at the fiat bottom. The solutions in integral form for the vertical deflexion at the ice-water interface were obtained by means of a joint Laplace-Fourier transform. The asymptotic representations of the wave motion were explicitly derived for large time with a fixed distance-to-time ratio. The effects of the finite depth of fluid on the resultant wave pattems were discussed in detail. As the depth increases from zero, the critical wave number and the minimal group velocity first increase to their peak values and then decrease to constants.
The transient gravity waves due to an impulsive source in a two-layer fluid system are investigated analytically. The fluid is assumed to be inviscid and incompressible. The density of each of the two layers is constant. Five different boundary conditions are considered. The depth of each of the two layers is infinite or finite. The upper fluid of finite depth is covered by a rigid lid or a free surface. Based on the assumption of small-amplitude waves, a linear system is established. The integral solutions for the free-surface and interfacial waves are obtained by means of the Fourier-Laplace transform. The corresponding asymptotic representations are derived for large time with a fixed distance-to-time ratio by the Stokes and Scorer methods of stationary phase. The analytical solutions show that there are two different modes, namely the free-surface and interracial wave modes. The wave profiles observed depend on the relation between the distance-to-time ratio and the maximal group velocities and on the limiting values of the second derivatives of the frequencies as well.
The two-dimensional free-surface waves due to a point force steadily moving beneath the capillary surface of an incompressible viscous fluid of infinite depth were analytically investigated. The unsteady Oseen equations were taken as the governing equations for the viscous flows. The kinematic and dynamic conditions including the combined effects of surface tension and viscosity were linearized for small-amplitude waves on the free-surface. The point force is modeled as an impulsive Oseenlet. The complex dispersion relation for the capillary-gravity waves shows that the wave patterns are characterized by the Weber number and the Reynolds number. The asymptotic expansions for the wave profiles were explicitly derived by means of Lighthill’s theorem for the Fourier transform of a function with a finite number of singularities. Furthermore, it is found that the unsteady wave system consists of four families, that is, the steady-state gravity wave, the steady-state capillary wave, the transient gravity wave, and the transient capillary wave. The effect of viscosity on the capillary-gravity was analytically expressed.