This paper is concerned with the routing protocol design for large-scale wireless sensor and actor networks (WSANs).The actor-sensor-actor communication (ASAC) strategy is first proposed to guarantee the reliability of persistent actor-actor communication.To keep network connectivity and prolong network lifetime,we propose a dynamic gradient-based routing protocol (DGR) to balance the energy consumption of the network.With the different communication ranges of sensors and actors,the DGR protocol uses a data load expansion strategy to significantly prolong the network lifetime.The balance coefficient and the routing re-establishment threshold are also introduced to make the tradeoff between network lifetime and routing efficiency.Simulation results show the effectiveness of the proposed DGR protocol for unbalanced and persistent data transmission.
We investigate the finite-time consensus problem for heterogeneous multi-agent systems composed of first-order and second-order agents.A novel continuous nonlinear distributed consensus protocol is constructed,and finite-time consensus criteria are obtained for the heterogeneous multi-agent systems.Compared with the existing results,the stationary and kinetic consensuses of the heterogeneous multi-agent systems can be achieved in a finite time respectively.Moreover,the leader can be a first-order or a second-order integrator agent.Finally,some simulation examples are employed to verify the efficiency of the theoretical results.
This paper investigates the fnite-time consensus problem of multi-agent systems with single and double integrator dynamics,respectively.Some novel nonlinear protocols are constructed for frst-order and second-order leader-follower multi-agent systems,respectively.Based on the fnite-time control technique,the graph theory and Lyapunov direct method,some theoretical results are proposed to ensure that the states of all the follower agents can converge to its leader agent s state in fnite time.Finally,some simulation results are presented to illustrate the efectiveness of our theoretical results.
In this paper, two methods of generating minimally persistent circle formation are presented. The proposed methods adopt a leader-follower strategy and all followers are firstly motivated to move into the leader's interaction range. Based on the information about relative angle and relative distance, two numbering schemes are proposed to generate minimally persistent circle formation. Distributed control laws are also designed to maintain the desired relative distance between agents. The distinctive features of the proposed methods are as follows. First, only 2n - 3 unilateral communication links for n agents are needed during the circle formation process and thus the communication complexity can be reduced. In addition, the formation topology is kept fixed for the whole motion and achieves a self-stability property. Finally, each follower keeps a regualr interval with its neighbors and the formation converges to a uniform circle formation. Simulation results are also provided to demonstrate the effectiveness of the proposed methods.