By using the entanglement entropy method, this paper calculates the statistical entropy of the Bose and Fermi fields in thin films, and derives the Bekenstein-Hawking entropy and its correction term on the background of a rotating and charged black string. Here, the quantum field is entangled with quantum states in the black string and thin film to the event horizon from outside the rotating and charged black string. Taking into account the effect of the generalized uncertainty principle on quantum state density, it removes the difficulty of the divergence of state density near the event horizon in the brick-wall model. These calculations and discussions imply that high density quantum states near the event horizon of a black string are strongly correlated with the quantum states in a black string and that black string entropy is a quantum effect. The ultraviolet cut-off in the brick-wall model is not reasonable. The generalized uncertainty principle should be considered in the high energy quantum field near the event horizon. From the viewpoint of quantum statistical mechanics, the correction value of Bekenstein-Hawking entropy is obtained. This allows the fundamental recognition of the correction value of black string entropy at nonspherical coordinates.
The generalized uncertainty relation is introduced to calculate the quantum statis-tical entropy corresponding to cosmic horizon. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is no divergent logarithmic term in the original brick-wall method. And it is obtained that the quantum statistical en-tropy corresponding to cosmic horizon is proportional to the area of the horizon. Further it is shown that the entropy corresponding to cosmic horizon is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. In our calculation, by using the quantum statistical method, we obtain the partition function of Bose field and Fermi field on the background of five-dimensional spacetime. We provide a way to study the quantum statistical entropy corresponding to cosmic horizon in the higher-dimensional spacetime.
ZHAO Ren1,2 & ZHANG ShengLi1 1 Department of Applied Physics, Xi’an Jiaotong University, Xi’an 710049, China
Recently,based on the study of black hole Hawking radiation with the tunnel effect method,we found that the radiation spectrum of the black hole is not a strict pure thermal spectrum. It is a very interesting problem to determine how the departure of the black hole radiation spectrum from the pure thermal spectrum affects entropy. We calculate the partition function by the energy spectrum obtained using tunnel effect. Using the relation between the partition function and entropy,we derive the correction value to Bekenstein-Hawking entropy of the charged black hole. Fur-thermore,we obtain the conditions that various thermodynamic quantities must satisfy,when phase transition of the charged black hole occurs.
Recently, the Hawking radiation of a black hole has been studied using the tunnel effect method. The radiation spectrum of a black hole is derived. By discussing the correction to spectrum of the rotating black hole, we obtain the canonical entropy. The derived canonical entropy is equal to the sum of Bekenstein-Havcking entropy and correction term. The correction term near the critical point is different from the one near others. This difference plays an important role in studying the phase transition of the black hole. The black hole thermal capacity diverges at the critical point. However, the canonical entropy is not a complex number at this point. Thus we think that the phase transition created by this critical point is the second order phase transition. The discussed black hole is a five-dimensional Kerr-AdS black hole. We provide a basis for discussing thermodynamic properties of a higher-dimensional rotating black hole.
After considering the generalized uncertainty principle, we discuss the quantum tunneling radiation of a fivedimensional Sehwarzschild anti de Sitter black hole. The radiation spectrum and the correction value of the Bekenstein-- Hawking entropy are derived. In a five-dimensional black hole the one order correction term in the Bekenstein-Hawking entropy correction term is proportional to the third power of the area, and the logarithmic correction term is a twoorder small quantity. The correction term is related to the dimension constant introduced in the generalized uncertainty principle. Because the black hole entropy is not divergent, the lowest value of the five-dimensional Schwarzschild anti de Sitter black hole horizon radius is obtained. After considering the generalized uncertainty principle, the radiation spectrum is still consistent with normalization theory.