一当场,自我本地化系统为在有深入的 3D 里程碑的 3D 环境起作用的活动机器人被开发。机器人通过合并从 odometry 和单向性的照相机收集的信息的一个地图评估者递归地估计它的姿势。我们为这二个传感器造非线性的模型并且坚持说机器人运动和不精密的传感器大小的无常操作应该全部被嵌入并且追踪我们的系统。我们在一个概率的几何学观点和使用 unscented 变换描述无常框架宣传无常,它经历给定的非线性的功能。就我们的机器人的处理力量而言,图象特征在相应投射特征的附近被提取。另外,数据协会被统计距离评估。最后,一系列系统的实验被进行证明我们的系统的可靠、精确的性能。
An adaptive weighted stereo matching algorithm with multilevel and bidirectional dynamic programming based on ground control points (GCPs) is presented. To decrease time complexity without losing matching precision, using a multilevel search scheme, the coarse matching is processed in typical disparity space image, while the fine matching is processed in disparity-offset space image. In the upper level, GCPs are obtained by enhanced volumetric iterative algorithm enforcing the mutual constraint and the threshold constraint. Under the supervision of the highly reliable GCPs, bidirectional dynamic programming framework is employed to solve the inconsistency in the optimization path. In the lower level, to reduce running time, disparity-offset space is proposed to efficiently achieve the dense disparity image. In addition, an adaptive dual support-weight strategy is presented to aggregate matching cost, which considers photometric and geometric information. Further, post-processing algorithm can ameliorate disparity results in areas with depth discontinuities and related by occlusions using dual threshold algorithm, where missing stereo information is substituted from surrounding regions. To demonstrate the effectiveness of the algorithm, we present the two groups of experimental results for four widely used standard stereo data sets, including discussion on performance and comparison with other methods, which show that the algorithm has not only a fast speed, but also significantly improves the efficiency of holistic optimization.