The existence and stability of defect superlattice solitons in parity-time (PT) symmetric superlattice and simplelattice complex potentials are reported. Compared with defect simple-lattice solitons in similar potentials, the defect soliton in superlattice has a wider stable range than that in simple-lattice. The solitons' power increases with increasing propagation constant. For the positive defect, the solitons are stable in the whole region where solitons exist in the semi-infinite gap. For the zero defect, the solitons are unstable at the edge of the band. For the negative defect, the solitons propagate with the shape of Y at low propagation constant and propagate stably at the large one.
The existence and stability of defect solitons supported by parity-time (PT) symmetric defects in superlattices are investigated. In the semi-infinite gap, in-phase solitons are found to exist stably for positive defects, zero defects, and negative defects. In the first gap, out-of-phase solitons are stable for positive defects or zero defects, whereas in-phase solitons are stable for negative defects. For both the in-phase and out-of-phase solitons with the positive defect and in-phase solitons with negative defect in the first gap, there exists a cutoff point of the propagation constant below which the defect solitons vanish. The value of the cutoff point depends on the depth of defect and the imaginary parts of the PT symmetric defect potentials. The influence of the imaginary part of the PT symmetric defect potentials on soliton stability is revealed.
The propagation of hollow Gaussian beams in strongly nonlocal nonlinear media is studied in detail. Two analytical expressions are derived. For hollow Gaussian beams, the intensity distribution always evolves periodically. However the second-order moment beam width can keep invariant during propagation if the input power is equal to the critical power. The interaction of two hollow Gaussian beams and the vortical hollow Gaussian beams are also discussed. The vortical hollow Gaussian beams with an appropriate topological charge can keep their shapes invariant during propagation.