The present paper studies the coalescence of pore columns in ferroelectric ceramics driven by back and forth domain switching under cyclic electric field. A finite element method that incorporates mass transfer capacity is formulated to simulate the evolution of point defects subjected to the kinetics of pore surface diffusion and domain wall migration. The merge of point defects provides a mechanism for the vacancy agglomeration that leads to the formation of large pores or microcracks.
Methyl Methacrylate(MMA) has been filled in the apertures of aligned carbon nanotubes(ACNTs). Then PMMA/ACNTs composites have been synthesized by in-situ polymerization. The SEM results show that carbon nanotubes are well dispersed and directionally arranged in the composites. The electrical conductivities of the parallel direction (parallel with ACNTs) and perpendicular direction (perpendicular with ACNTs) of composites were respectively tested to be 15 S·cm-1 and 4 S·cm-1, so the composites were conductivity anisotropic. Compared with PMMA, the thermal stable temperature of composites in air was improved by 100 ℃,and the thermal con- ductivity of composites was 13.64 times of PMMA.