This study investigated the promotion effect of A.ferrooxidans on complex heavy metals coprecipitation process.A.ferrooxidans significantly enhanced the ferrous oxidation,which also promoted the formation of iron-oxyhydroxysulphate.Cu(II)concentration reduced to0.058mmol/L in A.ferrooxidans inoculated system,and Cd also reduced to the lowest concentration(0.085mmol/L).Pb was mainly immobilized as anglesite and iron-oxyhydroxysulphate promoted the removal of remanent Pb in solution.The precipitates are characterized by XRD,SEM,and FTIR analysis.The main component of the iron-oxyhydroxysulphate was well crystallized jarosite.A.ferrooxidans contributed to the formation of schwertmannite in later monovalent cation lack stage.Higher ferrous iron oxidation rate and Fe(III)supply rate in A.ferrooxidans inoculated system facilitated polyhedron crystal formation and the increase of particle diameter.Complex heavy metals could be incorporated into iron oxyhydroxysulphate crystal,and efficiently removed from acidic wastewater through A.ferrooxidans mediated coprecipitation.
Min GANMing-ming LIJian ZENGXin-xing LIUJian-yu ZHUYue-hua HUGuan-zhou QIU
Bioleaching Xiangjiang River alkaline sediment contaminated by multiple heavy metals was investigated. Multiple metals in alkaline sediment possess significant toxicity to aquatic organisms or humans and will greatly inhibit bioleaching. The bioleaching method using autotrophic bacteria mixed with heterotrophic bacteria can solve this problem successfully. The experiment results showed that bioleaching efficiencies of Zn, Mn, Cu, and Cd were 95.2 %, 94.2 %, 90.1 %, and 84.4 %, respectively. Moreover, the changes of heavy metal concentrations in different fractions in contaminated sediment before and after bioleaching were analyzed by selective sequential extraction, and it was discovered that the main fractions of Zn, Mn, Cu and Cd after bioleaching are Fe-Mn oxide, organic associated form and a residual form. Its biotoxicity decreased greatly. The bioleaching heavy metals from sediment using autotrophic bacteria combined with heterotrophic bacteria can effectively improve the bioleaching efficiency and reduce toxicity.