The rate constants for the ozone reactions with n-butyl methyl sulfide (n-BMS, CH3CH2CH2CH2SCH3), sec-butyl methyl sulfide (s-BMS, CH3CH2(CH3)CHSCH3) and tert-butyl methyl sulfide (t-BMS, (CH3)3CSCH3) were measured using our smog chamber under supposedly pseudo-first-order conditions at 300±2 K and 760 Torr. The experimental determined rate constants for n-butyl, s-butyl and t-butyl methyl sulfide are (1.23 ± 0.06)×10-19, (5.08 ± 0.19)×10?20 and (2.26 ± 0.14)×10?20 cm3·molecule-1·s-1, respectively. The reactivity-structure relationship of the reactions was discussed and used to illustrate the mechanism of the ozone reaction with thioethers. The results enrich the kinetics data of atmospheric chemistry.
Large quantities of di-tert-butyl peroxide (DTBP) have been emitted into the troposphere due to human activities. Its role in the atmospheric photochemical reaction has not been understood. This study presents the results of the photochemical reactions of DTBP and NOx, which have been simulated in a self-made smog chamber under the temperature of (29±1)℃. Both the wall decays of ozone and NO2 could be neglected, compared to the results in simulative experiments. The effective intensity of UV light used in the experiments was 1.28×10-3 s-1, which was expressed by the rate constant of NO2 photolysis in purified air. The reaction mechanism was proposed according to our results and reports of other researchers. The maximum values of incremental reactivity (IR) in the three simulative ex- periments were 9.53×10-2, 5.23×10-2 and 3.78×10-2, respectively. The incremental reactivity decreased with the increase of initial concentrations of DTBP. The IR value of DTBP obtained in this study was comparable to that of acetylene reported in our previous research.
The short-lived reactive specimen nitrous acid HONO was generated in the gas phase by the hetero-geneous reaction of gaseous HCl with AgNO2 which can generate higher concentration of HONO than other methods. We investigated the process from generation to dissociation in the gas phase under different controlled temperatures,and discussed the ionization and reaction on the solid surface by combination of the photoelectron spectroscopy and photoionization mass spectroscopy(PES-PIMS) and in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS) .
The importance of the iodine chemistry in the atmosphere has been demonstrated by recent observa- tions. The uptake of ethyl iodine on black carbon surface was investigated at 298 K for the first time. Degussa FW2 (an amorphous black carbon comprising medium oxides) was used as black carbon sample. Black carbon surface was found to be deactivated in reaction with C_2H_5I, and the uptake coef- ficient (γ ) was dependent on the time of exposure. The value of (2.3±0.9)×10^(-2) was determined for the initial uptake coefficient (γ0). The result suggests that the heterogeneous loss of C_2H_5I on carbonaceous aerosols may be important under the atmospheric conditions.
The reactivity of sulfur dioxide (SO2) molecules toward iron oxide cationic clusters (FemOn+) is studied by a homemade time-of-flight mass spectrometer coupled with a laser ablation/supersonic expansion cluster source and a fast flow reactor. The association products FemOnSO2+ can be observed for most of the clusters. The interesting result is that the cooperation effect of SO2 and water is in favor of the adsorption of gas phase water on specific scale iron oxide clusters (Fe2O2+ and Fe3O3+ ). The reactivity information obtained may be useful to investigate atmospheric heterogeneous chemistry of related systems.
The time of flight mass spectrometer coupled with a laser ablation/supersonic expansion cluster source and a fast flow reactor was adopted to study the reactivity of cationic vanadium oxide clusters(VmOn+) toward acetylene(C2H2) molecules under gas phase(P,~ 1.14 kPa),under near room temperature(T,~ 350 K) conditions.Association products,VmOnC2H2+(m,n = 2,4;2,6;3,7―8;4,9―11;5,12―13;6,13―16,and 7,17),are observed.The oxidation of C2H2 by(V2O5)+n(n = 1―3) is experimentally identified.The reactivity of(V2O5)+ n decreases as n increases.Density functional theory(DFT) calculations were carried out to interpret the reaction mechanisms.The DFT results indicate that a terminal oxygen atom from V2O5+ can transfer overall barrierlessly to C2H2 at room temperature,which is in agreement with the experimental observation.Other experimental results such as the observation of V2O6C2H+2 and non-observation of V2O7,8C2H+2 in the experiments are also well interpreted based on the DFT calculations.The reactivity of vanadium oxide clusters toward acetylene and other hydrocarbons may be considered in identifying molecular level mechanisms for related heterogeneous catalysis.