Supercritical(SC) CO2 anti-solvent induced polymer epitaxy(SAIPE) method was used to help prepare nanohybrid carbon nanotubes(CNTs) wrapped with polyvinyl alcohol(PVA) nanocrystals.With the variation of a series of experimental conditions or peripheral effects,such as PVA concentration,CNTs concentration,and SC CO2 pressure,the optimal experimental variables for PVA-nanocrystals growing on CNTs have been found.The adsorption of polymer on CNTs via multiple weak molecular interactions has been studied by Fourier transform infrared(FTIR) spectroscopy and Raman spectroscopy.The mechanism about the formation of PVA nanocrystals on CNTs can be suggested through the experimental phenomena.These CNTs wrapped with PVA nanocrystals can be directly used as nanofillers to fabricate PVA composite fibers reinforced with CNTs by electrospinning.
A facile method was succcssfidly developed to prepare a "pine needle-like" nanocompositc of carbon nanotubcs/polylhiophenc(CNTs/PTh) in ethanol with the assistance of supercritical CO2(SC CO2). The experiment conditions such as mass ratio of thiophene monomer to carbon nanotubes, reaction temperature, and reaction time wcrc optimized, and the morphology and thickness of PTh layers on CNTs were hence effectively controlled. The results of Fourier translbrm infrared(FTIR) spectra, X-ray photoelectron spectra(XPS) and Raman spectra indicate the π-π interactions between PTh and CNT. A possible formation mechanism about the unique microstructure was suggested by virtue of the morphological evolution of the nanocomposite. As a facile, environment benign, and adjustable method, the proposed method holds great potential in the preparation of functional hybrid nanocomposites with the help of SC CO2, which will be promising in the tields of nanofabrication and electrochemical device preparation.
LU Leilei CHEN Zhimin XU Guiheng ZHANG Jianan XU Qun