Underground brine samples were collected along the southern coast of the Laizhou Bay, Shangdong, China in two field investigations in 2003. The brines are confined in the Quaternary sediment and underwent a series of geochemical changes. The redox states of these brines were assessed qualitatively based on the measurements of Eh and redox-sensitive species such as DO, NO NO~, Mn2+, Fe2+, SO4^2- in the brines. The redox condition of the underground brine is anoxic, and the redox reactions that controlled the redox potential of brines should be Fe(Ⅲ) reduction and sulfate reduction.
Hydrochemistry of underground brines along south coast of Laizhou Bay, Shandong, China has been analyzed. Brine samples were collected from 43 wells in this area. It was considered that the brines were originated from seawater. However, whether they were formed by seawater evaporation or seawater freezing was not fully sure. We created a simple method by plotting Na/Cl vs. seawater concen-tration factor (SCF) and Ca/Mg vs. SCF to determine the brine formation geochemically. Comparison of our results to previous seawater freezing and evaporation experiments indicated that the brines were formed by seawater evaporation. The ratios of HCO3/Cl of some low salinity brines in the study area were relatively higher, indicating that the brines may have mixed with other waters after the generation. The Br/Cl ratios of the brines decreased annually in the past 20 to 30 years of exploitation, indicating down-ward permeation of the brine from which bromine was extracted.
A carrier type gamma irradiator is an advanced device currently installed in Qingdao Irra- diation Center (QIC) and has been put into operation for nine years in Qingdao, China. It utilizes Co-60 as the radiation source; the initial Co-60 loading is 1.48×1016 Bq (0.4 million Curies). Rubber, natural and synthetic polymers, heat-shrinkable films and tubes, disposable medical supplies, some foods and drugs have been irradiated for test in the past. Especially a great success achieved on the radiation of compound food for young shrimp. The practice demonstrates that the bacteria in the compound food can be de- stroyed by the irradiation at optimum dosage between 5 000–6 000 Gy.