The paper presents the design and preliminary test results of a corer used for hard seafloor sediments sampling. Generally the sediment cores are provided by either gravity-type coting or deep-ocean drilling for a range of studies. However, in consideration of the operability and available sample length in collecting hard sediments, these methods exhibit no advantages. In this paper, a new corer which can exploit both hydrostatic energy and gravity energy for hard sediments coting is presented. The hydrostatic energy is provided by pressure differential between ambient seawater pressure and air pressure in an empty cavity. During sampling process, the corer penetrates into the sediment like a gravity corer and then automatically shifts to the percussion mode. The experiments in the laboratory indicate that the corer can complete 40 cycles in the sea with a cycle time of 2.8 seconds in percussion mode and impact the sample tube with the velocity of 0.2 m/s during each cycle. Besides, its adjustable falling velocity can make the corer achieve the maximum efficiency in coring different sediments.