The liquid-solid transitions of (Co2Si+CoSi) and (CoSi+CoSi2) eutectic alloys were realized in drop tube and the rapid eutectic growth mechanism of intermetallic compounds was examined. The experimental and calculated results indicate that with increasing Co content, the intermetallic compound prefers nucleating primarily. The eutectic microstructures experience the transitions of 'lamellar-anomalous-divorced' eutectic with undercooling. In undercooled state, the growth of CoSi intermetallic compound always lags behind others, and no matter how large the undercooling is, this intermetallic compound grows under the solutal diffusion control The calculated coupled zone demonstrates that (Co2Si+CoSi) eutectic can form within certain undercooling regime, when the composition is in the range from 23.6% to 25.4% Si. And the calculated coupled zone of (CoSi+CoSi2) covers a composition range from 40.8% to 43.8% Si.
We studied the relationship between corona structure and properties of solvent-free Fe3O4 nanofluids. We proposed a series of corona structures with different branched chains and synthesize different solvent-free nanofluids in order to show the effect of corona structure on the phase behavior, dispersion, as well as rheology properties. Results demonstrate novel liquid-like behaviors without solvent at room temperature. Fe3O4 magnetic nanoparticles content is bigger than 8% and its size is about 23 nm. For the solvent-free nanofluids,the long chain corona has the internal plasticization, which can decrease the loss modulus of system, while the short chain of corona results in the high viscosity of nanofluids. Long alkyl chains of modifiers lead to lower viscosity and better flowability of nanofluids. The rheology and viscosity of the nanofluids are correlated to the microscopic structure of the corona, which provide an in-depth insight into the preparing nanofluids with promising applications based on their tunable and controllable physical properties.