This paper proposes a novel inverse synthetic aperture radar(ISAR) imaging method based on second-order keystone transform(KT) and Sandglass transform for group targets flying in a formation with constant accelerated rectilinear motion in the same radar beam. First, range curvature and range walk of each sub-target among group targets are corrected by the second-order KT combined with the quadratic phase term compensation. After range alignment, the signals in each range frequency cell can be modelled as multiple chirp signals and then the Sandglass transform is utilized to cross-range imaging, which transforms the time–frequency distribution of the signals in each range frequency cell into beelines parallel to the slow time axis simultaneously. Finally, cross-range profiles of group targets in each range frequency cell are obtained via a projection of the perk of every scatterer in the two-dimensional accumulation plane onto the frequency axis. The advantage of the proposed method is that it can align range profiles of each sub-target simultaneously and image cross-range profiles directly without separating the returned signals, which simplifies the operation procedure. Simulation results are used to demonstrate the effectiveness of the proposed method.