Straight-line compliant mechanisms are important building blocks to design a linear-motion stage, which is very useful in precision applications. However, only a few configurations of straight-line compliant mechanisms are applicable. To construct more kinds of them, an approach to design large-displacement straight-line flexural mechanisms with rotational flexural joints is proposed, which is based on a viewpoint that the straight-line motion is regarded as a compromise of rigid and compliant parasitic motion of a rotational flexural joint. An analytical design method based on the Taylor series expansion is proposed to quickly obtain an approximate solution. To illustrate and verify the proposed method, two kinds of flexural joints, cross-axis hinge and leaf-type isosceles-trapezoidal flexural(LITF) pivot are used to reconstruct straight-line flexural mechanisms. Their performances are obtained by analytic and FEA method respectively. The comparisons of the results show the accuracy of the approach. Both examples show that the proposed approach can convert a large-deflection flexural joint into approximate straight-line mechanism with a high linearity that is higher than 5 000 within 5 man displacement. This can lead to a new way to design, analyze or optimize straight-line flexure mechanisms.