A high power semiconductor laser diode with a tapered and cascaded active multimode interferometer (MMI) cavity was designed and demonstrated. An output power as high as 32 mW was obtained for the novel laser diode with a tapered and cascaded active MMI cavity, being much higher than the 9.8 mW output power of the conventional single ridge F-P laser with the same material structure and the same device length due to the larger active area; and also being higher than the 21.2 mW output power of the rectangular and cascaded active MMI laser diode with nearly the same structure, except for the shape of the MMI area. In addition, the tapered and cascaded active multimode interferometer laser showed stable single mode outputs up to the maximum output power.
We present a novel coherent transceiver for optical differential phase-shift keying/differential quadrature phase-shift keying (DPSK/DQPSK) signals based on heterodyne detection and electrical delay interferometer. A simulation framework is provided to predict a theoretical sensitivity level for the reported scheme. High sensitivity of –45.18 dBm is achieved for 2.5-Gb/s return-to-zero (RZ)-DPSK signal, and high sensitivities of –36.83 dBm (I tributary) and –35.90 dBm (Q tributary) are observed for 2.5-GBaud/s RZ-DQPSK signal in back-to-back configuration. Transmission for both signals over 100 km is also investigated. Experimental results are discussed and analyzed.
We present the design and optimization of evanescently coupled waveguide photodiodes(EC-WPDs) based on the coupling modes theory and the beam propagation method.Efficient focalization of the optical power in the absorber is achieved by an appropriate choice of index matching layers of EC-WPDs.Numerical simulation shows that high-speed(40 GHz),high quantum efficiency(81%) and high linearity photodiodes can be achieved, and EC-WPDs are promising devices for future optical communication systems.
The effects of optical losses oil a directly-modulated radio-over-fiber (RoF) system used for distributed antenna networks are determined. The results show that with a properly designed bidirectional amplifier, the RoF link can tolerate over 20 and 16 dB of optical losses for down- and up-links, respectively. Simulation results are also consistent with the experimental data. These findings can contribute to tile design of RoF distributed antenna systems with different topologies.
A novel photonic-assisted approach to microwave frequency measurement is proposed and experimentally demonstrated. The proposed scheme is based on the frequency-to-power mapping with different transmis- sion responses. A polarizer is used in one output branch of a phase modulator to simultaneously implement phase modulation and intensity modulation. Owing to the complementary nature of the transmission re- sponses and the Mach-Zehnder interferometers (MZIs), this scheme theoretically provides high resolution and tunable measurement range. The measurement errors in the experimental results can be kept within 0.2 GHz over a freauencv ranee from 0.1 to 5.3 GHz.
A novel Wireless Fidelity (WiFi) over fiber link and a wavelength assignment protocol are proposed to provide sufficient bandwidth and extensive coverage range for the various applications in the Internet of Things (IoT).The performance of the WiFi over fiber-based wireless IoT network is evaluated in terms of error vector magnitude (EVM) and data throughput for both the up and down links between the WiFi central control system and remote radio units (RRUs).The experimental results illustrate the reliability of the fiber transmission of 64 Quadrature Amplitude Modulation (64QAM) WiFi signals by direct analog modulation.In order to efficiently utilize the wavelength resources,we also demonstrated the wavelength assignment protocol by employing optical switching configurations in Central Station (CS) to realize the wavelength switching,and the simulation results indicate the queuing size and the corresponding queue delay for different numbers of available wavelengths.
A novel scalable and integrated design that supports optical multicast and burst amplification is proposed and demonstrated experimentally. The powers of incoming signals can be tuned to optimize the results of burst amplification and replication. Experimental results also show that erbium-doped optical Fiber amplication (EDFA) transients can be suppressed to an equally low level regardless of the burst parameters. Extended structure designs are further proposed to satisfy the need of mass replication of multicast signals.