The assembly of gold nanorods(GNRs) into different liquid crystalline structures can be controlled by tuning their surface electric potential, After mildly removing excess surfactants in the GNRs solution, the electrostatic interaction between GNRs can be tuned by adjusting counter ion concentration. Specifically, nematic and smectic structures formed after solvent evaporation at low and high bromide concentrations, respectively. These results could be helpful for fabricating anisotropy enabled devices composed of metal and semiconductor nanorods.
By the combination of high-temperature organometallic synthesis and phase transfer through complete ligand-exchange withmixed phosphate, highly water-dispersible Fe3O4nanoparticles with narrow size distribution are obtained, which show appli-cable response to magnetic field. IR and -potential characterization of this system provides insights into ligand structures onparticle surface.