The Ni-TiN nanocomposite film was successfully electrodeposited on brass copper substrates.The microstructures of the Ni-TiN nanocomposite film were investigated using scanning electron microscopy(SEM) and transmission electron microscopy(TEM).Its average grain size was analyzed through X-ray diffraction(XRD),and its anti-corrosion property was studied through potentiodynamic scanning curves and electrochemical impedance spectroscopy(EIS).The results show that the morphology of Ni-TiN composite film is sensitively dependent on the electroplating current density,TiN nanoparticle concentration,solution stirring speed,bath temperature and pH value of solution.The average grain size of the optimized nanocomposite film is about 50 nm.Meanwhile,the Ni-TiN nanocomposite films are much more resistant to corrosion than pure Ni coatings.
The corrosion behaviors of copper and copper/titanium galvanic couple (GC) in seawater were studied by electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN) techniques in conjunction with scanning electron microscopy (SEM) method. The results show that the corrosion process of copper in seawater can be divided into two stages, in which corrosion resistance and SE show the same evolution trend of initial increase and subsequent decrease, while SG changes oppositely. However, the ensemble corrosion process of copper/titanium GC in seawater includes three stages, in which corrosion resistance and SE show the evolution features of initial decrease with a subsequently increase, and the final decrease again;while SG changes oppositely. The potential difference between copper and titanium in their galvanic couple can accelerate the initiation of pitting corrosion of copper, and both the minimum and maximum corrosion potentials of copper/titanium GC are much more positive than those of pure copper.
The corrosion behaviors and corresponding electrochemical impedance spectroscopy(EIS) and polarization curves of pure Mg in neutral 1.0% NaCl solution were investigated.The fractal dimension of EIS at different time was studied.The corrosion process and EIS evolution are divided into three stages.In the initial stage,EIS is composed of two overlapped capacitive arcs,the polarization resistance and charge transfer resistance increase rapidly with immersion time,and the corrosion rate decreases.Then,two well-defined capacitive arcs appear,and the charge transfer resistance and corrosion rate remain stable.After a long immersion time,inductive component appears in a low frequency range,the charge transfer resistance decreases and the corrosion rate increases with the immersion time.The fractal dimension obtained from the time records of EIS seems to be a promising tool for the analysis of corrosion morphology because of its direct relationship with the metal surface.
A kind of environmental friendly anodizing routine for AZ91D magnesium alloy,based on an alkaline borate-potassium acid phthalate(KAP) electrolyte,was studied.The effect of KAP on the properties of the anodized film was investigated by scanning electron microscopy(SEM),X-ray diffraction(XRD),energy dispersive spectrometry(EDS),potentiodynamic polarization and electrochemical impedance spectroscopy(EIS),respectively.The results showed that the anodizing process,surface morphology,thickness,phase structure and corrosion resistance of the anodized film were strongly dependent on the concentration of KAP.In the presence of adequate KAP,a compact and smooth anodized film with excellent corrosion resistance was obtained.
Zn and Co multi-doped CeO2 thin films have been prepared using an anodic electrochemical method. The structures and magnetic behaviors are characterized by several techniques, in which the oxygen states in the lattice and the absorptive oxygen bonds at the surface are carefully examined. The absorptive oxygen bond is about 50% of the total oxygen bond by using a semi-quantitative method. The value of actual stoichiometry δ′ is close to 2. The experimental results indicate that the thin films are of a cerium oxide-based solid solution with few oxygen vacancies in the lattice and many absorptive oxygen bonds at the surface. Week ferromagnetic behaviors were evidenced by observed M-H hysteresis loops at room temperature. Furthermore, an evidence of relative ferromagnetic contributions was revealed by the temperature dependence of magnetization. It is believed that the ferromagnetic contributions exhibited in the M-H loops originate from the absorptive oxygen on the surface rather than the oxygen vacancies in the lattice.
Effects of reflowing temperature and time on the alloy layer of tinplate and its electrochemical behavior in 3.5%NaCl solution were investigated by electrochemical measurements and surface characterization.It is found that the amount of alloy layer increases with the increase of reflowing temperature and time.Then the corrosion potential of detinned tinplate shifts positively and the corrosion rate decreases.After being coupled with tin,the detinned tinplate acts as cathode and tin acts as anode initially.However,after being exposed for some time,the potential shifts of both detinned tinplate and tin reverse the polarity of the coupling system.The galvanic current density decreases with the increase of reflowing temperature and time.
The electrochemical behaviors and coupling behaviors of the Mg2Si and Si phases with α(Al) were investigated, the corrosion morphologies of Al alloys containing Mg2Si and Si particles were observed, and the corrosion mechanism associated with them in Al-Mg-Si alloys was advanced. The results show that Si particle is always cathodic to the alloy base, Mg2Si is anodic to the alloy base and corrosion occurs on its surface at the beginning. However, during its corrosion process, the preferential dissolution of Mg and the enrichment of Si make Mg2Si transform to cathode from anode, leading to the anodic dissolution and corrosion of the alloy base at its adjacent periphery at a later stage. As the mole ratio of Mg to Si in an Al-Mg-Si alloy is less than 1.73, it contains Mg2Si and Si particles simultaneously in the grain boundary area, and corrosion initiates on the Mg2Si surface and the precipitate-free zone (PFZ) at the adjacent periphery of Si particle. As corrosion time is extended, Si particle leads to severe anodic dissolution and corrosion of the PFZ at its adjacent periphery, expedites the polarity transformation between Mg2Si and the PFZ and accelerates the corrosion of PFZ at the adjacent periphery of Mg2Si particle.